123 resultados para radiative transition
Resumo:
An experimental investigation to identify the source conditions that distinguish finite-volume negatively buoyant fluid projectile behaviour from fountain behaviour in quiescent environments of uniform density is described. Finite-volume releases are governed by their source Froude number Fr D and the aspect ratio L/D of the release, where L denotes the length of the column of fluid dispensed vertically from the nozzle of diameter D. We establish the influence of L/D on the peak rise heights of a release formed by dispensing saline solution into fresh water for 0
Resumo:
We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.
Resumo:
In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.
Accurate screened exchange band structures for the transition metal monoxides MnO, FeO, CoO and NiO.
Resumo:
We report calculations of the band structures and density of states of the four transition metal monoxides MnO, FeO, CoO and NiO using the hybrid density functional sX-LDA ('screened exchange local density approximation'). Late transition metal oxides are prototypical examples of strongly correlated materials, which pose challenges for electronic structure methods. We compare our results with available experimental data and show that our calculations generally yield accurate predictions for the fundamental band gaps and valence bands, in favourable agreement with previously reported theoretical studies. For MnO, the band gaps are still underestimated, suggesting additional many-body effects that are not captured by our screened hybrid functional approach.
Resumo:
An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO. This results in the ability to simulate the transition with detailed chemistry in very short computation times. The tables are then used to optimise the transition with the goal of reducing NO x emissions and fluctuations in IMEP. Copyright © 2010 SAE International.
Resumo:
A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results. The model is used to investigate key control parameters and their effects on parameters that are difficult to measure experimentally. The effect of the spark in the first HCCI cycles is found to have a major impact on the stability of the transition. Copyright © 2010 SAE International.