159 resultados para predictive maintenance
Resumo:
Considering some predictive mechanisms, we show that ultrafast average-consensus can be achieved in networks of interconnected agents. More specifically, by predicting the dynamics of the network several steps ahead and using this information in the design of the consensus protocol of each agent, drastic improvements can be achieved in terms of the speed of consensus convergence, without changing the topology of the network. Moreover, using these predictive mechanisms, the range of sampling periods leading to consensus convergence is greatly expanded compared with the routine consensus protocol. This study provides a mathematical basis for the idea that some predictive mechanisms exist in widely-spread biological swarms, flocks, and networks. From the industrial engineering point of view, inclusion of an efficient predictive mechanism allows for a significant increase in the speed of consensus convergence and also a reduction of the communication energy required to achieve a predefined consensus performance.
Resumo:
An approach to reconfiguring control systems in the event of major failures is advocated. The approach relies on the convergence of several technologies which are currently emerging: Constrained predictive control, High-fidelity modelling of complex systems, Fault detection and identification, and Model approximation and simplification. Much work is needed, both theoretical and algorithmic, to make this approach practical, but we believe that there is enough evidence, especially from existing industrial practice, for the scheme to be considered realistic. After outlining the problem and proposed solution, the paper briefly reviews constrained predictive control and object-oriented modelling, which are the essential ingredients for practical implementation. The prospects for automatic model simplification are also reviewed briefly. The paper emphasizes some emerging trends in industrial practice, especially as regards modelling and control of complex systems. Examples from process control and flight control are used to illustrate some of the ideas.
Resumo:
This paper describes the application of variable-horizon model predictive control to trajectory generation in surface excavation. A nonlinear dynamic model of a surface mining machine digging in oil sand is developed as a test platform. This model is then stabilised with an inner-loop controller before being linearised to generate a prediction model. The linear model is used to design a predictive controller for trajectory generation. A variable horizon formulation is augmented with extra terms in the cost function to allow more control over digging, whilst still preserving the guarantee of finite-time completion. Simulations show the generation of realistic trajectories, motivating new applications of variable horizon MPC for autonomy that go beyond the realm of vehicle path planning. ©2010 IEEE.
Hybrid model predictive control applied to switching control of burner load for a compact marine boi
Resumo:
This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for which the optimal solution is a limit cycle. Regarding the marine boiler control the aim is to find an optimal control strategy which minimizes a trade-off between deviations in boiler pressure and water level from their respective setpoints while limiting burner switches.The approach taken is based on the Mixed Logic Dynamical framework. The whole boiler systems is modelled in this framework and a model predictive controller is designed. However to facilitate on-line implementation only a small part of the search tree in the mixed integer optimization is evaluated to find out whether a switch should occur or not. The strategy is verified on a simulation model of the compact marine boiler for control of low/high burner load switches. It is shown that even though performance is adequate for some disturbance levels it becomes deteriorated when the optimal solution is a limit cycle. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
Model Predictive Control (MPC) is increasingly being proposed for application to miniaturized devices, fast and/or embedded systems. A major obstacle to this is its computation time requirement. Continuing our previous studies of implementing constrained MPC on Field Programmable Gate Arrays (FPGA), this paper begins to exploit the possibilities of parallel computation, with the aim of speeding up the MPC implementation. Simulation studies on a realistic example show that it is possible to implement constrained MPC on an FPGA chip with a 25MHz clock and achieve MPC implementation rates comparable to those achievable on a Pentium 3.0 GHz PC. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
Most academic control schemes for MIMO systems assume all the control variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The multiplexed MPC scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, and hence improved performance, despite finding sub-optimal solutions to the original problem. The multiplexed MPC scheme is also closer to industrial practice in many cases. This paper presents initial stability results for two variants of multiplexed MPC, and illustrates the performance benefit by an example. Copyright copy; 2005 IFAC. Copyright © 2005 IFAC.