113 resultados para monte carlo method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the Serpent Monte Carlo code was used as a tool for preparation of homogenized few-group cross sections for the nodal diffusion analysis of Sodium cooled Fast Reactor (SFR) cores. Few-group constants for two reference SFR cores were generated by Serpent and then employed by nodal diffusion code DYN3D in 2D full core calculations. The DYN3D results were verified against the references full core Serpent Monte Carlo solutions. A good agreement between the reference Monte Carlo and nodal diffusion results was observed demonstrating the feasibility of using Serpent for generation of few-group constants for the deterministic SFR analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian formulated neural networks are implemented using hybrid Monte Carlo method for probabilistic fault identification in cylindrical shells. Each of the 20 nominally identical cylindrical shells is divided into three substructures. Holes of (12±2) mm in diameter are introduced in each of the substructures and vibration data are measured. Modal properties and the Coordinate Modal Assurance Criterion (COMAC) are utilized to train the two modal-property-neural-networks. These COMAC are calculated by taking the natural-frequency-vector to be an additional mode. Modal energies are calculated by determining the integrals of the real and imaginary components of the frequency response functions over bandwidths of 12% of the natural frequencies. The modal energies and the Coordinate Modal Energy Assurance Criterion (COMEAC) are used to train the two frequency-response-function-neural-networks. The averages of the two sets of trained-networks (COMAC and COMEAC as well as modal properties and modal energies) form two committees of networks. The COMEAC and the COMAC are found to be better identification data than using modal properties and modal energies directly. The committee approach is observed to give lower standard deviations than the individual methods. The main advantage of the Bayesian formulation is that it gives identities of damage and their respective confidence intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to disign an airfoil of which maximum lift coefficient (CL max) is not sensitive to location of forced top boundary layer transition. Taking maximizing mean value of CL max and minimizing standard deviation as biobjective, leading edge radius, manximum thickness and its location, maximum camber and its location as deterministic design variables, location of forced top boundary layer transition as stochastic variable, XFOIL as deterministic CFD solver, non-intrusive polynomial chaos as substitute of Monte Carlo method, we completed a robust airfoil design problem. Results demonstrate performance of initial airfoil is enhanced through reducing standard deviation of CL max. Besides, we also know maximum thickness has the most dominating effect on mean value of CL max, location of maximum thickness has the most dominating effect on standard deviation of CL max, maximum camber has a little effect on both mean value and standard deviation, and maximum camber is the only element of which increase can lead increase of mean value and standard deviation at the same time. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment of lost audio and speech packets. © EURASIP, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.