155 resultados para metallic ion
Resumo:
Single-mode emission is achieved in previously multimode gain-guided vertical-cavity surface-emitting lasers (VCSEL's) by localized modification of the mirror reflectivity using focused ion-beam etching. Reflectivity engineering is also demonstrated to suppress transverse mode emission in an oxide-confined device, reducing the spectral width from 1.2 nm to less than 0.5 nm.
Resumo:
Photoluminescence experiments have identified strain as the origin for polarization pinning in vertical cavity surface emitting lasers post-processed by focused ion beam etching. Theoretical models were applied to deduce the strain in devices. Post-annealing was used to optimize polarization pinning.
Resumo:
In this study, a collimating lens is introduced at the output facet of a tapered waveguide laser to compensate for the divergence of the optical mode. The collimating lens is shown to enhance the laser efficiency while simultaneously reducing the far field divergence.
Resumo:
The yield behaviour of two aluminum alloy foams (Alporas and Duocel) has been investigated for a range of axisymmetric compressive stress states. The initial yield surface has been measured, and the evolution of the yield surface has been explored for uniaxial and hydrostatic stress paths. It is found that the hydrostatic yield strength is of similar magnitude to the uniaxial yield strength. The yield surfaces are of quadratic shape in the stress space of mean stress versus effective stress, and evolve without corner formation. Two phenomenological isotropic constitutive models for the plastic behaviour are proposed. The first is based on a geometrically self-similar yield surface while the second is more complex and allows for a change in shape of the yield surface due to differential hardening along the hydrostatic and deviatoric axes. Good agreement is observed between the experimentally measured stress versus strain responses and the predictions of the models.
Resumo:
We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching - a well-established technique for optical mask repair and for IC failure analysis and repair - without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5×10 -4μm3/pC. At a current of 3nA, for example, this corresponds to an etch rate of 1.05μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1μm. Changes in the roughness of the etched surface plane stay below 8nm.
Resumo:
An alternative method for seeding catalyst nanoparticles for carbon nanotubes and nanowires growth is presented. Ni nanoparticles are formed inside a 450 nm SiO2 film on (100) Si wafers through the implantation of Ni ions at fluences of 7.5×1015 and 1.7×1016 ions.cm-2 and post-annealing treatments at 700, 900 and 1100°C. After exposed to the surface by HF dip etching, the Ni nanoparticles are used as catalyst for the growth of vertically aligned carbon nanotubes by direct current plasma enhanced chemical vapor deposition. © 2007 Materials Research Society.
Resumo:
A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1). © 2010 IOP Publishing Ltd.
Resumo:
A number of alternative designs are presented for Penning ion traps suitable for quantum information processing (QIP) applications with atomic ions. The first trap design is a simple array of long straight wires, which allows easy optical access. A prototype of this trap has been built to trap Ca+ and a simple electronic detection scheme has been employed to demonstrate the operation of the trap. Another trap design consists of a conducting plate with a hole in it situated above a continuous conducting plane. The final trap design is based on an array of pad electrodes. Although this trap design lacks the open geometry of the other traps described above, the pad design may prove useful in a hybrid scheme in which information processing and qubit storage take place in different types of trap. The behaviour of the pad traps is simulated numerically and techniques for moving ions rapidly between traps are discussed. Future experiments with these various designs are discussed. All of the designs lend themselves to the construction of multiple trap arrays, as required for scalable ion trap QIP.