125 resultados para metallic glass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid glass-carbon 2D braided composites with varying carbon contents are impacted using a gas gun by impactors of masses 12.5 and 44.5. g, at impact energies up to 50. J. The damage area detected by ultrasound C-scan is found to increase roughly linearly with impact energy, and is larger for the lighter impactor at the same impact energy. The area of whitening of the glass tows on the distal side corresponds with the measured C-scan damage area. X-ray imaging shows more intense damage, at the same impact energy, for a higher-mass impactor. Braids with more glass content have a modest increase in density, decrease in modulus, and reduction in the C-scan area and dent depth at the impact site, particularly at the higher impact energies. Impact damage is found to reduce significantly the compressive strength, giving up to a 26% reduction at the maximum impact energy. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100 °C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extrinsic tensile strength of glass can be determined explicitly if the characteristics of the critical surface flaw are known, or stochastically if the critical flaw characteristics are unknown. This paper makes contributions to both these approaches. Firstly it presents a unified model for determining the strength of glass explicitly, by accounting for both the inert strength limit and the sub-critical crack growth threshold. Secondly, it describes and illustrates the use of a numerical algorithm, based on the stochastic approach, that computes the characteristic tensile strength of float glass by piecewise summation of the surface stresses. The experimental validation and sensitivity analysis reported in this paper show that the proposed computer algorithm provides an accurate and efficient means of determining the characteristic strength of float glass. The algorithm is particularly useful for annealed and thermally treated float glass used in the construction industry. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia (NH 3) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH 3 plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive modelocking using carbon nanotubes is achieved in a linear cavity waveguide laser realized by ultrafast laser inscription in ytterbium doped bismuthate glass. The pulses observed under a Q-switched envelope have a repetition rate of 1.5 GHz. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminated glass units are traditionally used to provide a degree of post-fracture strength, but the residual strength is often limited to relatively low levels suffi cient for holding the glass fragments together for a predetermined amount of time. It is possible to achieve a higher level of residual strength, but this requires specific boundary conditions and/or opaque reinforcing materials. This paper describes the experimental investigations on laminated glass units that can provide a signifi cant degree of post-fracture resistance, without the need of boundary restraints or opaque reinforcing materials. The glass units are composed entirely of combinations of conventional transparent interlayers and commercially available glass (annealed, heat treated and chemically strengthened). The paper also describes an empirical energy based interpretation of the mechanical response of the laminated units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide © 2011 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of vanadium sesquioxide V2O3 in its different phases has been calculated using the screened exchange hybrid density functional. The hybrid functional accurately reproduces the experimental electronic properties of all three phases, the paramagnetic metal (PM) phase, the anti-ferromagnetic insulating phase, and the Cr-doped paramagnetic insulating (PI) phase. We find that a fully relaxed supercell model of the Cr-doped PI phase based on the corundum structure has a monoclinic-like local strain around the substitutional Cr atoms. This is found to drive the PI-PM transition, consistent with a Peierls-Mott transition. The PI phase has a calculated band gap of 0.15 eV, in good agreement with experiment.