116 resultados para journalists in films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report about the magnetoresistive properties of calcium-doped lanthanum manganate thin films grown by RF magnetron sputtering on single crystalline LaAlO3 and MgO substrates. Two orientations of the magnetic field with respect to the electrical current have been studied: (i) magnetic field in the plane of the film and parallel to the electrical current, and (ii) magnetic field perpendicular to the plane of the film. The film grown on LaAlO 3 is characterised by an unusual magnetoresistive behaviour when the magnetic field is applied perpendicular to the film plane: the appearance of two bumps in the field dependence of the resistance is shown to be related to the occurrence of anisotropic magnetoresistive effects in manganate films. © 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Significant reduction of the bulk resistivity in a ferroelectric Pb(Zr 0.45Ti0.55)O3 thin film is observed before the remnant polarization started to decrease noticeably at the onset of its fatigue switching process. It is associated with the increase of charge carriers within the central bulk region of the film. The decrease of bulk resistivity would result in the increase of Joule heating effect, improving the temperature of the thin film, which is evaluated by the heat conduction analysis. The Joule heating effect in turn accelerates the polarization reduction, i.e. fatigue. Enhancing the heat dissipation of a ferroelectric capacitor is shown to be able to improve the device's fatigue endurance effectively. © 2013 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The residual stresses in Pb(Zr0.3Ti0.7)O3 thin films were measured by the sin2 Ψ method using the normal X-ray incidence. The spacing of different planes (hkl) parallel to the film surface were converted to the spacing of a set of inclined planes (100). The angles between (100) and (hkl) were equivalent to the tilting angles of (100) from the normal of film surface. The residual stresses were extracted from the linear slope of the strain difference between the equivalent inclined direction and normal direction with respect to the sin2 Ψ. The results were in consistency with that derived from the conventional sin2 Ψ method. © 2013 The Japan Society of Applied Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ferroelectric thin films have been intensively studied at the nanometre scale due to the application in many fields, such as non-volatile memories. Enhanced piezo-response force microscopy (E-PFM) was used to investigate the evolution of ferroelectric and ferroelastic nanodomains in a polycrystalline thin film of the simple multi-ferroic PbZr0.3Ti0.7O 3 (PZT). By applying a d.c. voltage between the atomic force microscopy (AFM) tip and the bottom substrate of the sample, we created an electric field to switch the domain orientation. Reversible switching of both ferroelectric and ferroelastic domains towards particular directions with predominantly (111) domain orientations are observed. We also showed that along with the ferroelectric/ferroelastic domain switch, there are defects that also switch. Finally, we proposed the possible explanation of this controllable defect in terms of flexoelectricity and defect pinning. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rashba spin splitting is a two-dimensional (2D) relativistic effect closely related to spintronics. However, so far there is no pristine 2D material to exhibit enough Rashba splitting for the fabrication of ultrathin spintronic devices, such as spin field effect transistors (SFET). On the basis of first-principles calculations, we predict that the stable 2D LaOBiS2 with only 1 nm of thickness can produce remarkable Rashba spin splitting with a magnitude of 100 meV. Because the medium La2O2 layer produces a strong polar field and acts as a blocking barrier, two counter-helical Rashba spin polarizations are localized at different BiS 2 layers. The Rashba parameter can be effectively tuned by the intrinsic strain, while the bandgap and the helical direction of spin states sensitively depends on the external electric field. We propose an advanced Datta-Das SFET model that consists of dual gates and 2D LaOBiS2 channels by selecting different Rashba states to achieve the on-off switch via electric fields. © 2013 American Chemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. © 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.