151 resultados para discrete cosine transform
Resumo:
An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect. © 1985 IEEE.
Resumo:
Cyclic loading of a plane strain mode I crack under small scale yielding is analyzed using discrete dislocation dynamics. The dislocations are all of edge character, and are modeled as line singularities in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of solutions for edge dislocations in a half-space and a non-singular complementary solution that enforces the boundary conditions, which is obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. An irreversible relation between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip is also specified, which permits crack growth to emerge naturally. It is found that crack growth can occur under cyclic loading conditions even when the peak stress intensity factor is smaller than the stress intensity required for crack growth under monotonic loading conditions; however below a certain threshold value of ΔKI no crack growth was seen.
Resumo:
Small scale yielding around a mode I crack is analysed using polycrystalline discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modelled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, nucleation, interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Grain boundaries are modelled as impenetrable to dislocations. The polycrystalline material is taken to consist of two types of square grains, one of which has a bcc-like orientation and the other an fcc-like orientation. For both orientations there are three active slip systems. Alternating rows, alternating columns and a checker-board-like arrangement of the grains is used to construct the polycrystalline materials. Consistent with the increasing yield strength of the polycrystalline material with decreasing grain size, the calculations predict a decrease in both the plastic zone size and the crack-tip opening displacement for a given applied mode I stress intensity factor. Furthermore, slip-band and kink-band formation is inhibited by all grain arrangements and, with decreasing grain size, the stress and strain distributions more closely resemble the HRR fields with the crack-tip opening approximately inversely proportional to the yield strength of the polycrystalline materials. The calculations predict a reduction in fracture toughness with decreasing grain size associated with the grain boundaries acting as effective barriers to dislocation motion.
Resumo:
This paper discusses the application of Discrete Event Simulation (DES) in modelling the complex relationship between patient types, case-mix and operating theatre allocation in a large National Health Service (NHS) Trust in London. The simulation model that was constructed described the main features of nine theatres, focusing on operational processes and patient throughput times. The model was used to test three scenarios of case-mix and to demonstrate the potential of using simulation modelling as a cost effective method for understanding the issues of healthcare operations management and the role of simulation techniques in problem solving. The results indicated that removing all day cases will reduce patient throughput by 23.3% and the utilization of the orthopaedic theatre in particular by 6.5%. This represents a case example of how DES can be used by healthcare managers to inform decision making. © 2008 IEEE.
Resumo:
Holistic representations of natural scenes is an effective and powerful source of information for semantic classification and analysis of arbitrary images. Recently, the frequency domain has been successfully exploited to holistically encode the content of natural scenes in order to obtain a robust representation for scene classification. In this paper, we present a new approach to naturalness classification of scenes using frequency domain. The proposed method is based on the ordering of the Discrete Fourier Power Spectra. Features extracted from this ordering are shown sufficient to build a robust holistic representation for Natural vs. Artificial scene classification. Experiments show that the proposed frequency domain method matches the accuracy of other state-of-the-art solutions. © 2008 Springer Berlin Heidelberg.
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.