193 resultados para conversion chain
Resumo:
In recent years a variety of experimental and theoretical work has been reported on the use of semiconductor optical amplifiers for high speed wavelength conversion. However little work has addressed the dynamic limitations of this conversion process in detail with a view to device optimization. In this paper, a detailed study of the conversion process is carried out in order to optimize device parameters and drive conditions for increased conversion speed and improved modulation index.
Resumo:
This paper describes a novel technique whereby a mixture of cross-phase and cross-gain modulation effects in an SOA causes polarization rotation of a cw probe beam in the presence of a signal pulse, enabling the transmission of the probe through a polarizer to be controlled. The benefits of this approach are: 1) Very high extinction ratios present in the wavelength converted signal (>30 achieved); 2) A non-inverted wavelength converted signal, which is advantageous for chirp-compensation;2 3) A simple and stable experimental set-up, 4) Converted pulses which can be shaped to be faster than the input pulses.
Resumo:
The cross-gain-saturation effect in SOAs, has been shown to enable robust high-speed wavelength conversion. Under strong electrical and optical pumping, conversion speeds in excess of 20 Gbit/s have been illustrated. However, the effect of chirp on transmission distance at such ultrahigh bit rates has not been studied theoretically in detail. This paper considers the chirp introduced on conversion, employing cross-gain saturation, and studies its dependence on amplifier drive current and signal power. It further shows how an increase in injected cw optical power can reduce chirp while improving conversion speed.
Resumo:
Wavelength conversion in the 1550 nm regime was achieved in an integrated semiconductor optical amplifier (SOA)/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. A 12 dB output extinction ratio was obtained for an average coupled input power of 75 μW with the laser section driven at 65 mA and the amplifier section at 180 mA. The response time achieved was as low as 13 ps with the laser biased at 175 mA even with low extinction ratios. The laser exhibits a similar recovery time allowing potentially very high bit-rate operation.
Resumo:
Wavelength conversion in the 1.55-μm regime was achieved for the first time in an integrated SOA/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. In terms of speed, response times as low as 13ps were observed, though at the expense of reduced extinction ratio. Generally, these results indicate that operation in the 10s of GB/s should be possible.
Resumo:
A technique is demonstrated that allows for the wavelength conversion of data with both simultaneous monitoring and replacing of a wavelength identifying pilot tone. The technique should be upgradable to data rates of 10Gb/s and higher.
Resumo:
An integrated multiwavelength grating cavity (MGC) laser fabricated by selective area regrowth is demonstrated. In addition to allowing wavelength conversion, the device can perform various important network functions such as space switching and multiplexing. The use of the device for these functions offers several advantages from a wavelength division multiplexing (WDM) network, such as flexibility, reduced component count, size, and the associated cost reduction.
Resumo:
A study of the relative performance of an integrated semiconductor optical amplifier (SOA)/distributed feedback laser wavelength converter that can operate with negative penalties at 10 Gb/s rates is conducted. It is found that reduction of more than 25 times in required input powers are achieved when compared with laser or SOA converters.
Resumo:
All-optical routing of 2.5Gbit/s WDM signals across two cascaded Optical Cross Connects(OXCs) with a penalty of only 0.6dB has been demonstrated using tuneable wavelength converters and a passive WDM router.