165 resultados para computational aeroacoustics
Resumo:
Shear layers shed by aircraft wings roll up into vortices. A similar, though far less common, phenomenon can occur in the wake of a turbomachine blade. This paper presents experimental data from a new single stage turbine that has been commissioned at the Whittle Laboratory. Two low aspect ratio stators have been tested with the same rotor row. Surface flow visualisation illustrates the extremely strong secondary flows present in both NGV designs. These secondary flows lead to conventional passage vortices but also to an intense vortex sheet which is shed from the trailing edge of the blades. Pneumatic probe traverse show how this sheet rolls up into a concentrated vortex in the second stator design, but not in the first. A simple numerical experiment is used to model the shear layer instability and the effects of trailing edge shape and exit yaw angle distribution are investigated. It is found that the latter has a strong influence on shear layer rollup: inhibiting the formation of a vortex downstream of NGV 1 but encouraging it behind NGV 2.
Resumo:
This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.
Resumo:
Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. It is theorized that volume-mass characteristics of these decelerators are superior to those of common supersonic/subsonic parachutes and after deployment they may suffer no instabilities at high Mach numbers. A high fidelity computational fluid-structure interaction model is employed to investigate the behavior of tension cone inflatable aeroshells at supersonic speeds up to Mach 2.0. The computational framework targets the large displacements regime encountered during the inflation of the decelerator using fast level set techniques to incorporate boundary conditions of the moving structure. The preliminary results indicate large but steady aeroshell displacement with rich dynamics, including buckling of the inflatable torus that maintains the decelerator open under normal operational conditions, owing to interactions with the turbulent wake. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.