109 resultados para commercial sensitivity
Resumo:
Predicting damage to masonry structures due to tunnelling-induced ground movements remains a challenge for practising design engineers. Useful simplified procedures exist, but more detailed analysis has the potential to improve these procedures. This paper considers the use of finite element modelling, including non-linear constitutive laws for the soil and the structure, to simulate damage to a simple masonry structure subjected to tunnelling in sand. The numerical model is validated through comparison with the results of a series of centrifuge tests and used to perform a sensitivity study on the effect of building weight and masonry damage on the structural response. Results show a direct correlation between the weight of the structure, normalised to the relative stiffness between the structure and the soil, and the modification of the settlement profile. By including a cracking model for the masonry, the reduction in structural stiffness caused by progressive masonry damage is also proven to affect the building deflection.
Resumo:
Purpose: The purpose of this paper is to investigate how supply and demand interact during industrial emergence. Design/methodology/approach: The paper builds on previous theorising about co-evolutionary dynamics, exploring the interaction between supply and demand in a study of the industrial emergence of the commercial inkjet cluster in Cambridge, UK. Data are collected through 13 interviews with professionals working in the industry. Findings: The paper shows that as new industries emerge, asynchronies between technology supply and market demand create opportunities for entrepreneurial activity. In attempting to match innovative technologies to particular applications, entrepreneurs adapt to the system conditions and shape the environment to their own advantage. Firms that successfully operate in emerging industries demonstrate the functionality of new technologies, reducing uncertainty and increasing customer receptiveness. Research limitations/implications: The research is geographically bounded to the Cambridge commercial inkjet cluster. Further studies could consider commercial inkjet from a global perspective or test the applicability of the findings in other industries. Practical implications: Technology-based firms are often innovating during periods of industrial emergence. The insights developed in this paper help such firms recognise the emerging context in which they operate and the challenges that need to overcome. Originality/value: As an in depth study of a single industry, this research responds to calls for studies into industrial emergence, providing insights into how supply and demand interact during this phase of the industry lifecycle. © Emerald Group Publishing Limited.
Resumo:
Developing noninvasive and accurate diagnostics that are easily manufactured, robust, and reusable will provide monitoring of high-risk individuals in any clinical or point-of-care environment. We have developed a clinically relevant optical glucose nanosensor that can be reused at least 400 times without a compromise in accuracy. The use of a single 6 ns laser (λ = 532 nm, 200 mJ) pulse rapidly produced off-axis Bragg diffraction gratings consisting of ordered silver nanoparticles embedded within a phenylboronic acid-functionalized hydrogel. This sensor exhibited reversible large wavelength shifts and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 510-1100 nm. The experimental sensitivity of the sensor permits diagnosis of glucosuria in the urine samples of diabetic patients with an improved performance compared to commercial high-throughput urinalysis devices. The sensor response was achieved within 5 min, reset to baseline in ∼10 s. It is anticipated that this sensing platform will have implications for the development of reusable, equipment-free colorimetric point-of-care diagnostic devices for diabetes screening.