136 resultados para attribute-level performances
Resumo:
The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.
Resumo:
The concept of sustainable manufacturing is a form of pollution prevention that integrates environmental considerations in the production of goods while focusing on efficient resource use. Taking the industrial ecology perspective, this efficiency comes from improved resource flow management. The assessment of material, energy and waste resource flows, therefore, offers a route to viewing and analysing a manufacturing system as an ecosystem using industrial ecology biological analogy and can, in turn, support the identification of improvement opportunities in the material, energy and waste flows. This application of industrial ecology at factory level is absent from the literature. This article provides a prototype methodology to apply the concepts of industrial ecology using material, energy and waste process flows to address this gap in the literature. Various modelling techniques were reviewed and candidates selected to test the prototype methodology in an industrial case. The application of the prototype methodology showed the possibility of using the material, energy and waste resource flows through the factory to link manufacturing operations and supporting facilities, and to identify potential improvements in resource use. The outcomes of the work provide a basis to build the specifications for a modelling tool that can support those analysing their manufacturing system to improve their environmental performance and move towards sustainable manufacturing. © IMechE 2012.
Resumo:
Accurate and efficient computation of the distance function d for a given domain is important for many areas of numerical modeling. Partial differential (e.g. HamiltonJacobi type) equation based distance function algorithms have desirable computational efficiency and accuracy. In this study, as an alternative, a Poisson equation based level set (distance function) is considered and solved using the meshless boundary element method (BEM). The application of this for shape topology analysis, including the medial axis for domain decomposition, geometric de-featuring and other aspects of numerical modeling is assessed. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the properties of light emitting devices whose active layer consists of Er-doped Si nanoclusters (nc) generated by thermal annealing of Er-doped SiOx layers prepared by magnetron cosputtering. Differently from a widely used technique such as plasma enhanced chemical vapor deposition, sputtering allows to synthesize Er-doped Si nc embedded in an almost stoichiometric oxide matrix, so as to deeply influence the electroluminescence properties of the devices. Relevant results include the need for an unexpected low Si excess for optimizing the device efficiency and, above all, the strong reduction of the influence of Auger de-excitation, which represents the main nonradiative path which limits the performances of such devices and their application in silicon nanophotonics. © 2010 American Institute of Physics.
Resumo:
A superconducting magnetic shield can be built as a stack of several sections of milled 2G coated conductors. Each section consists of a closed loop where persistent currents can flow and provide a strong attenuation of external dc magnetic fields. The purpose of the present work is to study experimentally several geometries of such magnetic shields made out of YBa2Cu 3O7 (YBCO) coated conductors from SuperPower. Our aim is to investigate in detail the influence of the aspect ratio and the number of layers of the assembly on the magnetic shielding properties. In order to do so, the magnetic shield is subjected to an axial quasi-static ('dc') magnetic field ramped slowly at a fixed sweep rate. A Hall probe is used to measure the local magnetic induction inside the assembly as a function of the applied magnetic induction. Results show that the shielding factor, SF, (defined as the ratio between the applied magnetic induction and the magnetic induction measured inside the shield) is improved for increasing aspect ratios of the global coated conductor assembly and that the threshold magnetic induction (defined for SF = 10) increases with the number of layers. Using a double layer of 18 sections at T = 77K , dc magnetic fields up to 56 mT can be shielded by a factor larger than 10. Finally, the effect of an air gap of constant width between coated conductor sections is also characterized. © 2002-2011 IEEE.
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problem: ℤ2 × S3 discrete symmetry and S1 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. © 2007 IEEE.
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problems: ℤ × S3 discrete symmetry and 51 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. Copyright ©2007 Watam Press.