123 resultados para Vehicle standards
Resumo:
This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.
Resumo:
As operational impacts from buildings are reduced, embodied impacts are increasing. However, the latter are seldom calculated in the UK; when they are, they tend to be calculated after the building has been constructed, or are underestimated by considering only the initial materials stage. In 2010, the UK Government recommended that a standard methodology for calculating embodied impacts of buildings be developed for early stage design decisions. This was followed in 2011-12 by the publication of the European TC350 standards defining the 'cradle to grave' impact of buildings and products through a process Life Cycle Analysis. This paper describes a new whole life embodied carbon and energy of buildings (ECEB) tool, designed as a usable empirical-based approach for early stage design decisions for UK buildings. The tool complies where possible with the TC350 standards. Initial results for a simple masonry construction dwelling are given in terms of the percentage contribution of each life cycle stage. The main difficulty in obtaining these results is found to be the lack of data, and the paper suggests that the construction and manufacturing industries now have a responsibility to develop new data in order to support this task. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Resumo:
An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.
Resumo:
Increasing pressure on lowering vehicle exhaust emissions to meet stringent California and Federal 1993/1994 TLEV emission standards of 0.125 gpm NMOG, 3.4 gpm CO and 0.4 gpm NOx and future ULEV emission standards of 0.04 gpm NMOG, 1.7 gpm CO and 0.2 gpm NOx has focused specific attention on the cold start characteristics of the vehicle's emission system, especially the catalytic converter. From test data it is evident that the major portion of the total HC and CO emissions occur within the first two minutes of the driving cycle while the catalyst is heating up to operating temperature. The use of an electrically heated catalyst (EHC) has been proposed to alleviate this problem but the cost and weight penalties are high and the durability has yet to be fully demonstrated (1)*. This paper describes a method of reducing the light-off time of the catalytic converter to less than 20 seconds by means of an afterburner. The system uses exhaust gases from the engine calibrated to run rich and additional air injected into the exhaust gas stream to form a combustible mixture. The key feature concerns the method of making this combustible mixture ignitable within 2 seconds from starting the engine when the exhaust gases arriving at the afterburner are cold and essentially non-reacting. © Copyright 1992 Society of Automotive Engineers, Inc.
Resumo:
Customer feedback is normally fed into product design and engineering via quality surveys and therefore mainly comprises negative comments: complaints about things gone wrong. Whilst eradication of such problems will result in a feeling of satisfaction in existing customers, it will not instil the sense of delight required to attract conquest buyers. CUPID's aim is to conceive and evaluate ideas to stimulate product desirability through the provision of delightful features and execution. By definition, surprise and delight features cannot be foreseen, so we have to understand sensory appeal and, therefore, the "hidden" voice of the customer. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
Over 100 suppliers have now taken part in an initiative built to improve joint design and development performance of tier one suppliers and one vehicle manufacturer. Significant targets were set - 30 % cost down and 30% faster design time with 40% less development budget - and achieved An analysis of the initiative was used to determine the critical success factors. These include significant detail findings in the areas of performance measurement and alignment of development processes. Equal attention is given to understanding how co-development can be implemented and the paper will present findings related to objectivity, perception of partners and partnerships. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
A high-speed path-following controller for long combination vehicles (LCVs) was designed and implemented on a test vehicle consisting of a rigid truck towing a dolly and a semitrailer. The vehicle was driven through a 3.5 m wide lane change maneuver at 80 km/h. The axles of the dolly and trailer were steered actively by electrically-controlled hydraulic actuators. Substantial performance benefits were recorded compared with the unsteered vehicle. For the best controller weightings, performance improvements relative to unsteered case were: lateral tracking error 75% reduction, rearward amplification (RA) of lateral acceleration 18% reduction, and RA of yaw rate 37% reduction. This represents a substantial improvement in stability margins. The system was found to work well in conjunction with the braking-based stability control system of the towing vehicle with no negative interaction effects being observed. In all cases, the stability control system and the steering system improved the yaw stability of the combination. © 2014 by ASME.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 32 Gb/s using pulseamplitude modulation with four levels. Transmitter predistortion generates an optimized modulation waveform, which requires a receiver bandwidth of only 15 GHz. © OSA/ CLEO 2011.