148 resultados para VISUAL INSPECTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame. This is because manually inspecting bridges is a time-consuming and costly task, and some state Departments of Transportation (DOT) cannot afford the essential costs and manpower. In this paper, a novel method that can detect large-scale bridge concrete columns is proposed for the purpose of eventually creating an automated bridge condition assessment system. The method employs image stitching techniques (feature detection and matching, image affine transformation and blending) to combine images containing different segments of one column into a single image. Following that, bridge columns are detected by locating their boundaries and classifying the material within each boundary in the stitched image. Preliminary test results of 114 concrete bridge columns stitched from 373 close-up, partial images of the columns indicate that the method can correctly detect 89.7% of these elements, and thus, the viability of the application of this research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several research studies have been recently initiated to investigate the use of construction site images for automated infrastructure inspection, progress monitoring, etc. In these studies, it is always necessary to extract material regions (concrete or steel) from the images. Existing methods made use of material's special color/texture ranges for material information retrieval, but they do not sufficiently discuss how to find these appropriate color/texture ranges. As a result, users have to define appropriate ones by themselves, which is difficult for those who do not have enough image processing background. This paper presents a novel method of identifying concrete material regions using machine learning techniques. Under the method, each construction site image is first divided into regions through image segmentation. Then, the visual features of each region are calculated and classified with a pre-trained classifier. The output value determines whether the region is composed of concrete or not. The method was implemented using C++ and tested over hundreds of construction site images. The results were compared with the manual classification ones to indicate the method's validity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manually inspecting concrete surface defects (e.g., cracks and air pockets) is not always reliable. Also, it is labor-intensive. In order to overcome these limitations, automated inspection using image processing techniques was proposed. However, the current work can only detect defects in an image without the ability of evaluating them. This paper presents a novel approach for automatically assessing the impact of two common surface defects (i.e., air pockets and discoloration). These two defects are first located using the developed detection methods. Their attributes, such as the number of air pockets and the area of discoloration regions, are then retrieved to calculate defects’ visual impact ratios (VIRs). The appropriate threshold values for these VIRs are selected through a manual rating survey. This way, for a given concrete surface image, its quality in terms of air pockets and discoloration can be automatically measured by judging whether their VIRs are below the threshold values or not. The method presented in this paper was implemented in C++ and a database of concrete surface images was tested to validate its performance. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CO.1943-7862.0000126?journalCode=jcemd4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After earthquakes, licensed inspectors use the established codes to assess the impact of damage on structural elements. It always takes them days to weeks. However, emergency responders (e.g. firefighters) must act within hours of a disaster event to enter damaged structures to save lives, and therefore cannot wait till an official assessment completes. This is a risk that firefighters have to take. Although Search and Rescue Organizations offer training seminars to familiarize firefighters with structural damage assessment, its effectiveness is hard to guarantee when firefighters perform life rescue and damage assessment operations together. Also, the training is not available to every firefighter. The authors therefore proposed a novel framework that can provide firefighters with a quick but crude assessment of damaged buildings through evaluating the visible damage on their critical structural elements (i.e. concrete columns in the study). This paper presents the first step of the framework. It aims to automate the detection of concrete columns from visual data. To achieve this, the typical shape of columns (long vertical lines) is recognized using edge detection and the Hough transform. The bounding rectangle for each pair of long vertical lines is then formed. When the resulting rectangle resembles a column and the material contained in the region of two long vertical lines is recognized as concrete, the region is marked as a concrete column surface. Real video/image data are used to test the method. The preliminary results indicate that concrete columns can be detected when they are not distant and have at least one surface visible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manual inspection is required to determine the condition of damaged buildings after an earthquake. The lack of available inspectors, when combined with the large volume of inspection work, makes such inspection subjective and time-consuming. Completing the required inspection takes weeks to complete, which has adverse economic and societal impacts on the affected population. This paper proposes an automated framework for rapid post-earthquake building evaluation. Under the framework, the visible damage (cracks and buckling) inflicted on concrete columns is first detected. The damage properties are then measured in relation to the column's dimensions and orientation, so that the column's load bearing capacity can be approximated as a damage index. The column damage index supplemented with other building information (e.g. structural type and columns arrangement) is then used to query fragility curves of similar buildings, constructed from the analyses of existing and on-going experimental data. The query estimates the probability of the building being in different damage states. The framework is expected to automate the collection of building damage data, to provide a quantitative assessment of the building damage state, and to estimate the vulnerability of the building to collapse in the event of an aftershock. Videos and manual assessments of structures after the 2009 earthquake in Haiti are used to test the parts of the framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.