183 resultados para Underwater light.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synaptic plane rendered by an array of smart pixels was described regarding its application as a complementary component for neural network implementation. The smart spatial light modulator featured auto-modification abilities. Thus, an optical system incorporating this device can show self-reliant optical learning. Furthermore, the optical system design, in the area of its optical interconnection scheme, is highly flexible since the independent weight-plane pixels eliminated the difficulty between weight update calculation and weight representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a fibre-optic communication network, the wavelength-division multiplexing (WDM) technique enables an expansion of the data-carrying capacity of optical fibres. This can be achieved by transmitting different channels on a single optical fibre, with each channel modulating a different wavelength. In order to access and manipulate these channels at a node of the network, a compact holographic optical switch is designed, modelled, and constructed. The structure of such a switch consists of a series of optical components which are used to collimate the beam from the input, de-multiplex each individual wavelength into separated channels, manipulate the separated channels, and reshape the beam to the output. A spatial light modulator (SLM) is crucial in this system, offering control and flexibility at the channel manipulation stage, and providing the ability to redirect light into the desired output fibre. This is achieved by the use of a 2-D analogue phase computer generated hologram (CGH) based on liquid crystal on silicon (LCOS) technology. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-organization of the helical structure of chiral nematic liquid crystals combined with their sensitivity to electric fields makes them particularly interesting for low-threshold, wavelength tunable laser devices. We have studied these organic lasers in detail, ranging from the influence specific macroscopic properties, such as birefringence and order parameter, have on the output characteristics, to practical systems in the form of two-dimensional arrays, double-pass geometries and paintable lasers. Furthermore, even though chiral nematics are responsive to electric fields there is no facile means by which the helix periodicity can be adjusted, thereby allowing laser wavelength tuning, without adversely affecting the optical quality of the resonator. Therefore, in addition to studying the liquid crystal lasers, we have focused on finding a novel method with which to alter the periodicity of a chiral nematic using electric fields without inducing defects and degrading the optical quality factor of the resonator. This paper presents an overview of our research, describing (i) the correlation between laser output and material properties,(ii) the importance of the gain medium,(iii) multicolor laser arrays, and (iv) high slope efficiency (>60%) silicon back-plane devices. Overall we conclude that these materials have great potential for use in versatile organic laser systems.