120 resultados para TPM chip


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate a self-aligned approach for the fabrication of nanoscale hybrid silicon-plasmonic waveguide fabricated by local oxidation of silicon (LOCOS). Implementation of the LOCOS technique provides compatibility with standard complementary metal-oxide-semiconductor technology and allows avoiding lateral misalignment between the silicon waveguide and the upper metallic layer. We directly measured the propagation and the coupling loss of the fabricated hybrid waveguide using a near-field scanning optical microscope. The demonstrated structure provides nanoscale confinement of light together with a reasonable propagation length of ∼100 μm. As such, it is expected to become an important building block in future on-chip optoelectronic circuitry. © 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 800V rated lateral IGBT for high frequency, low-cost off-line applications has been developed. The LIGBT features a new method of adjusting the bipolar gain, based on a floating N+ stripe in front of the P+ anode/drain region. The floating N+ layer enhances the carrier recombination at the anode/drain side of the drift region resulting in a very significant decrease in the turn-off speed and substantially lower overall losses. Switching speeds as low as 140ns at 25oC and 300ns at 125oC have been achieved with corresponding equivalent Rdson at 125oC below 90mω.cm2. A fully operational AC-DC converter using a controller with an integrated LIGBT+depletion mode MOSFET chip has been designed and qualified in plastic SOP8 packages and used in 5W, 65kHz SMPS applications. The device is fabricated in 0.6μm bulk silicon CMOS technology without any additional masking steps. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. ©2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a chip-scale microbubble-based biosensing platform. An encapsulated microbubble oscillates acoustically in liquid when exposed to an ultrasound field with its resonant frequency set by shell parameters. Changes in the resonant frequency of the microbubble can be used to monitor analyte-binding events on the shell. A device concept is proposed where ultrasonic transducers are integrated within a microfluidic channel, inside which electrodes are patterned for differential measurements of microbubble impedance. This device enables simultaneous measurements of the acoustic and electrical response of the microbubble, from which both mechanical and electrical parameters can be extracted. These parameters are used to provide a signature of the analyte. This paper presents acoustic and electrical models of the microbubbles, with the effect of shell parameters being thoroughly discussed. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes electronically processed CDMA techniques which allow Gb/s data rates for each user in passive optical networks. We will present recent progress including a 16 chip Walsh-code system operating at 18 Gchip/s supporting up to 16 users. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate for the first time coding/decoding for OCDMA networks using electronic transversal filters at 18Gchips/s-a ten-fold improvement over previous demonstrations. The chip rate allows users at Gb/s rates in access applications. © 2007 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decade, passively modelocked optically pumped vertical external cavity surface emitting lasers (OPVECSELs), sometimes referred to as semiconductor disk lasers (OP-SDLs), impressively demonstrated the potential for generating femtosecond pulses at multi-Watt average output powers with gigahertz repetition rates. Passive modelocking with a semiconductor saturable absorber mirror (SESAM) is well established and offers many advantages such as a flexible design of the parameters and low non-saturable losses. Recently, graphene has emerged as an attractive wavelength-independent alternative saturable absorber for passive modelocking in various lasers such as fiber or solid-state bulk lasers because of its unique optical properties. Here, we present and discuss the modelocked VECSELs using graphene saturable absorbers. The broadband absorption due to the linear dispersion of the Dirac electrons in graphene makes this absorber interesting for wavelength tunable ultrafast VECSELs. Such widely tunable modelocked sources are in particularly interesting for bio-medical imaging applications. We present a straightforward approach to design the optical properties of single layer graphene saturable absorber mirrors (GSAMs) suitable for passive modelocking of VECSELs. We demonstrate sub-500 fs pulses from a GSAM modelocked VECSEL. The potential for broadband wavelength tuning is confirmed by covering 46 nm in modelocked operation using three different VECSEL chips and up to 21 nm tuning in pulsed operation is achieved with one single gain chip. A linear and nonlinear optical characterization of different GSAMs with different absorption properties is discussed and can be compared to SESAMs. © 2014 SPIE.