174 resultados para Speed Reading-Techniken
Resumo:
This paper describes a novel technique whereby a mixture of cross-phase and cross-gain modulation effects in an SOA causes polarization rotation of a cw probe beam in the presence of a signal pulse, enabling the transmission of the probe through a polarizer to be controlled. The benefits of this approach are: 1) Very high extinction ratios present in the wavelength converted signal (>30 achieved); 2) A non-inverted wavelength converted signal, which is advantageous for chirp-compensation;2 3) A simple and stable experimental set-up, 4) Converted pulses which can be shaped to be faster than the input pulses.
Resumo:
The cross-gain-saturation effect in SOAs, has been shown to enable robust high-speed wavelength conversion. Under strong electrical and optical pumping, conversion speeds in excess of 20 Gbit/s have been illustrated. However, the effect of chirp on transmission distance at such ultrahigh bit rates has not been studied theoretically in detail. This paper considers the chirp introduced on conversion, employing cross-gain saturation, and studies its dependence on amplifier drive current and signal power. It further shows how an increase in injected cw optical power can reduce chirp while improving conversion speed.
Resumo:
Wavelength conversion in the 1.55-μm regime was achieved for the first time in an integrated SOA/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. In terms of speed, response times as low as 13ps were observed, though at the expense of reduced extinction ratio. Generally, these results indicate that operation in the 10s of GB/s should be possible.
Resumo:
A technique is demonstrated that allows for the wavelength conversion of data with both simultaneous monitoring and replacing of a wavelength identifying pilot tone. The technique should be upgradable to data rates of 10Gb/s and higher.
Resumo:
Interferometric Optical Wavelength Converters (IOWCs) provide wavelength conversion functionality at high bit rates, and give low chip and enhanced extinction ratio compared with Cross-Gain wavelength converters. In paper, a numerical simulation is conducted to assess the noise performance of IOWC and its potential for cascading. The details of the experiment and the results obtained are presented.
Resumo:
To overcome reduced breakdown voltage and self-heating effects inherent in silicon-on-insulator (SOI) power integrated circuits while still maintaining good isolation between low power CMOS circuits and the high power cells, partial SOI (PSOI) technology has been proposed. PSOI devices make use of both buried oxide and substrate depletion to support the breakdown voltage. 2D analyses and modeling of parasitic capacitances in PSOI structures show that PSOI-lightly doped MOSFETs can increase the switching speed by as much as four times compared to conventional SOI structures, making them very attractive for high switching applications.
Resumo:
The feasibility of using AlGaInAs lasers for high-speed modulation at high temperatures was evaluated and compared with performance of GaInAsP devices. Both drift-diffusion and rate equation simulation were involved so that the temperature dependence of material parameters was found in terms of overall dynamic performance. Differential gain was estimated by means of drift-diffusion simulations.
Resumo:
In this paper, the static and dynamic performance of multi quantum-well (MQW) 1.3 μm InGaAsP Fabry Perot lasers is assessed experimentally and theoretically to identify the mechanisms responsible for impaired high speed performance at elevated temperature. Initially, threshold currents and spontaneous emission spectra are characterized for a range of temperatures from room temperature to 85 °C to indicate a significant increase in non-radiative current contributions. Preliminary estimates are made for the contributions of leakage and Auger recombination rates, found from the dependence of integrated spontaneous emission with carrier density. Drift-diffusion modelling is found to accurately predict the trend of threshold currents over temperature. Using gain modelling good agreement is found between the measured and predicted integrated spontaneous emission intensity. Gain measurements at 85 °C indicate a reduction in RIN frequency to 63% of the 25 °C value which matches well with experimental small signal performance.
Resumo:
High-speed configuration results of a conventional 850 nm VCSEL that is modified to operate as an efficient avalanche detector as well as a laser are discussed. The measured laser-to-detector reconfiguration delay of 3.2 ns is longer than the 1.2 ns detector-to-detector reconfiguration delay.