110 resultados para Semi-Regular Operators
Resumo:
The ground movements induced by the construction of supported excavation systems are generally predicted in the design stage by empirical/semi-empirical methods. However, these methods cannot account for the site-specific conditions and for information that become available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. Copyright © ASCE 2011.
Resumo:
The generalization of the geometric mean of positive scalars to positive definite matrices has attracted considerable attention since the seminal work of Ando. The paper generalizes this framework of matrix means by proposing the definition of a rank-preserving mean for two or an arbitrary number of positive semi-definite matrices of fixed rank. The proposed mean is shown to be geometric in that it satisfies all the expected properties of a rank-preserving geometric mean. The work is motivated by operations on low-rank approximations of positive definite matrices in high-dimensional spaces.© 2012 Elsevier Inc. All rights reserved.
Resumo:
Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet process mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.