140 resultados para SUPERCONDUCTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductors, such as YBCO bulks, have extremely high potential magnetic flux densities, comparing to rare earth magnets. Therefore, the magnetization of superconductors has attracted broad attention and contribution from both academic research and industry. In this paper, a novel technique is proposed to magnetize superconductors. Unusually, instead of using high magnetic fields and pulses, repeatedly magnetic waves with strength of as low as rare earth magnets are applied. These magnetic waves, generated by thermally controlling a Gadolinium (Gd) bulk with a rare earth magnet underneath, travel over the flat surface of a YBCO bulk and get trapped little by little. Thus, a very small magnetic field can be used to build up a very large magnetic field. In this paper, the modelling results of thermally actuated magnetic waves are presented showing how to transfer sequentially applied thermal pulses into magnetic waves. The experiment results of the magnetization of YBCO bulk are also presented to demonstrate how superconductors are progressively magnetized by small magnetic field © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for characterizing the propagation of the magnetic flux in an artificially drilled bulk high-temperature superconductor (HTS) during a pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical sample, the magnetic flux density is measured simultaneously in 16 holes by means of microcoils that are placed across the median plane, i.e. at an equal distance from the top and bottom surfaces, and close to the surface of the sample. We discuss the time evolution of the magnetic flux density in the holes during a pulse and measure the time taken by the external magnetic flux to reach each hole. Our data show that the flux front moves faster in the median plane than on the surface when penetrating the sample edge; it then proceeds faster along the surface than in the bulk as it penetrates the sample further. Once the pulse is over, the trapped flux density inside the central hole is found to be about twice as large in the median plane than on the surface. This ratio is confirmed by modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that filling the holes of a drilled bulk high-temperature superconductor (HTS) with a soft ferromagnetic powder enhances its trapping properties. The magnetic properties of the trapped field magnet are characterized by Hall probe mapping and magnetization measurements. This analysis is completed by a numerical model based on a 3D finite-element method where the conductivity of the superconducting material is described by a power law while the permeability of the ferromagnetic material is fixed to a given value and is considered uniform. Numerical results support the experimental observations. In particular, they confirm the increase of trapped flux that is observed with Hall probe mapping after impregnation. © 2011 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When bulk RE-BCO superconductors are used as permanent magnets in engineering applications, they are likely to experience transient variations of the applied magnetic field. The resulting vortex motion may cause a significant temperature increase. As a consequence the initial trapped flux is reduced. In the present work, we first focus on the cause of a temperature increase. The temperature distribution within a superconducting finite cylinder subjected to an alternating magnetic field is theoretically predicted. Results are compared to experimental data obtained by two temperature sensors attached to a bulk YBCO pellet. Second, we consider curative methods for reducing the effect of heat flux on the temperature increase. Hall-probe mappings on YBCO samples maintained out of the thermal equilibrium are performed for two different morphologies : a plain single domain and a single domain with a regularly spaced hole array. The drilled single-domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extreme sensitivity of Sm/Ba at high temperature in air becomes an obstacle to the fabrication of SmBCO single grains that exhibit stable and reliable superconducting properties. In this research, the superconducting properties of SmBCO single grains fabricated by top seeded melt growth (TSMG) from different batches of commercial SmBa2Cu3O 7-d (Sm-123) precursor powder using different processing atmospheres (air and 0.1% O2 in Ar), different processing methods (isothermal growth and continuous cooling) and different amounts of BaO2 content to suppress Sm/Ba substitution in air have been investigated in an attempt to understand fully the TSMG process for this system. As a result, based on extensive data, a novel and simple, low temperature post-annealing approach is proposed specifically to overcome the sensitivity of Tc to Sm/Ba substitution in order to simplify the fabrication of SmBCO and to increase its reliability with a view to the practical processing of these materials. Initial processing trials have been performed successfully to demonstrate the viability of the novel post-annealing process. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of processing and PFM techniques for practical bulk superconductor applications. © 2014 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive magnetic bearings are ideal components for energy storage flywheels which require small dynamic loads and low-maintenance bearings with minimal power requirements. High temperature superconductors such as YBCO can be used to fabricate these bearings and achieve the desired magnetic properties. Stiffness and gap decay due to high speed can be addressed by dynamically altering bearing geometry to provide active control with bulk materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt grown Nd-Ba-Cu-O (NdBCO) has been reported to exhibit higher values of critical current density, Jc and irreversibility field, Hirr, than other (RE)BCO superconductors, such as YBCO. The microstructure of NdBCO typically contains 5-10 μm sized inclusions of the Nd4Ba2Cu2O10 phase (Nd-422) in a superconducting NdBa2Cu3O7-δ phase (Nd-123) matrix. The average size of these inclusions is characteristically larger than that of the Y2BaCuO5 (Y-211) inclusions in YBCO. As a result, there is scope to further refine the Nd-422 size to enhance Jc in NdBCO. Large grain samples of NdBCO superconductor doped with various amounts of depleted UO2 and containing excess Nd-422 have been fabricated by top seeded melt growth under reduced oxygen partial pressure. The effect of the addition of depleted UO2 on the NdBCO microstructure has been studied systematically in samples with and without added CeO2. It is observed that the addition of UO2 refines the NdBCO microstructure via the formation of uranium-containing phase particles in the superconducting matrix. These particles are of approximately spherical geometry with dimensions of around 1 μm. The average size of the nonsuperconducting phase particles in the uranium-doped microstructure is an order of magnitude less than their size in un-doped Nd-123 prepared with excess Nd-422. The critical current density of uranium-doped NdBCO is observed to increase significantly compared to the undoped material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of large grain Y-Ba-Cu-O (YBCO) bulk superconductors fabricated by top seeded melt growth (TSMG) has been investigated. Seeding bulk samples with small, square shaped seed crystals leads to point nucleation and growth of the superconducting YBa2Cu3O7-y (Y-123) phase that exhibits the usual square habitual growth symmetry. The use of triangular and circular shaped seed crystals, however, modifies significantly the growth habit geometry of the grain. The use of large area seeds both increases the rate of epitaxial nucleation of the Y-123 phase and produces relatively large crystals in the incongruent melt, which decreases significantly the processing times of large grain samples. The present study is relevant to decrease processing times of samples with both preferred or no growth sectors and for multiple seeding of large grain samples which contain clean grain boundaries. © 2005 Published by Elsevier Ltd.