111 resultados para SOFT-START POLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, in cognitive science the emphasis is on studying cognition from a computational point of view. Studies in biologically inspired robotics and embodied intelligence, however, provide strong evidence that cognition cannot be analyzed and understood by looking at computational processes alone, but that physical system-environment interaction needs to be taken into account. In this opinion article, we review recent progress in cognitive developmental science and robotics, and expand the notion of embodiment to include soft materials and body morphology in the big picture. We argue that we need to build our understanding of cognition from the bottom up; that is, all the way from how our body is physically constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotion has been one of the frequently used case studies in hands-on curricula in robotics education. Students are usually instructed to construct their own wheeled or legged robots from modular robot kits. In the development process of a robot students tend to emphasize on the programming part and consequently, neglect the design of the robot's body. However, the morphology of a robot (i.e. its body shape and material properties) plays an important role especially in dynamic tasks such as locomotion. In this paper we introduce a case study of a tutorial on soft-robotics where students were encouraged to focus solely on the morphology of a robot to achieve stable and fast locomotion. The students should experience the influence material properties exert on the performance of a robot and consequently, extract design principles. This tutorial was held in the context of the 2012 Summer School on Soft Robotics at ETH Zurich, which was one of the world's first courses specialized in the emerging field. We describe the tutorial set-up, the used hardware and software, the students assessment criteria as well as the results. Based on the high creativity and diversity of the robots built by the students, we conclude that the concept of this tutorial has great potentials for both education and research. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increasing interest in applying biological principles to the design and control of robots. Unlike industrial robots that are programmed to execute a rather limited number of tasks, the new generation of bio-inspired robots is expected to display a wide range of behaviours in unpredictable environments, as well as to interact safely and smoothly with human co-workers. In this article, we put forward some of the properties that will characterize these new robots: soft materials, flexible and stretchable sensors, modular and efficient actuators, self-organization and distributed control. We introduce a number of design principles; in particular, we try to comprehend the novel design space that now includes soft materials and requires a completely different way of thinking about control. We also introduce a recent case study of developing a complex humanoid robot, discuss the lessons learned and speculate about future challenges and perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increasing interest in the use of unconventional materials and morphologies in robotic systems because the underlying mechanical properties (such as body shapes, elasticity, viscosity, softness, density and stickiness) are crucial research topics for our in-depth understanding of embodied intelligence. The detailed investigations of physical system-environment interactions are particularly important for systematic development of technologies and theories of emergent adaptive behaviors. Based on the presentations and discussion in the Future Emerging Technology (fet11) conference, this article introduces the recent technological development in the field of soft robotics, and speculates about the implications and challenges in the robotics and embodied intelligence research. © Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THERE ARE MANY different kinds of robots: factory automation systems that weld and assemble car engines; machines that place chocolates into boxes; medical devices that support surgeons in operations requiring high-precision manipulation; cars that drive automatically over long distances; vehicles for planetary exploration; mechanisms for powerline or oil platform inspection; toys and educational toolkits for schools and universities; service robots that deliver meals, clean floors, or mow lawns; and "companion robots" that are real partners for humans and share our daily lives. In a sense, all these robots are inspired by biological systems; it's just a matter of degree. A driverless vehicle imitates animals moving autonomously in the world.© 2012 ACM.