130 resultados para ROUGHNESS SCATTERING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known theoretically [1-3] that infinitely long fluid loaded plates in mean flow exhibit a range of unusual phenomena in the 'long time' limit. These include convective instability, absolute instability and negative energy waves which are destabilized by dissipation. However, structures are necessarily of finite length and may have discontinuities. Moreover, linear instability waves can only grow over a limited number of cycles before non-linear effects become dominant. We have undertaken an analytical and computational study to investigate the response of finite, discontinuous plates to ascertain if these unusual effects might be realized in practice. Analytically, we take a "wave scattering" [2,4] - as opposed to a "modal superposition" [5] - view of the fluttering plate problem. First, we solve for the scattering coefficients of localized plate discontinuities and identify a range of parameter space, well outside the convective instability regime, where over-scattering or amplified reflection/transmission occurs. These are scattering processes that draw energy from the mean flow into the plate. Next, we use the Wiener-Hopf technique to solve for the scattering coefficients from the leading and trailing edges of a baffled plate. Finally, we construct the response of a finite, baffled plate by a superposition of infinite plate propagating waves continuously scattering off the plate ends and solve for the unstable resonance frequencies and temporal growth rates for long plates. We present a comparison between our computational results and the infinite plate theory. In particular, the resonance response of a moderately sized plate is shown to be in excellent agreement with our long plate analytical predictions. Copyright © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smectic A liquid crystals, based upon molecular structures that consist of combined siloxane and mesogenic moieties, exhibit strong multiple scattering of light with and without the presence of an electric field. This paper demonstrates that when one adds a laser dye to these compounds it is possible to observe random laser emission under optical excitation, and that the output can be varied depending upon the scattering state that is induced by the electric field. Results are presented to show that the excitation threshold of a dynamic scattering state, consisting of chaotic motion due to electro-hydrodynamic instabilities, exhibits lower lasing excitation thresholds than the scattering states that exist in the absence of an applied electric field. However, the lowest threshold is observed for a dynamic scattering state that does not have the largest scattering strength but which occurs when there is optimization of the combined light absorption and scattering properties. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface enhanced Raman scattering (SERS) is a well-established spectroscopic technique that requires nanoscale metal structures to achieve high signal sensitivity. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On page OP 175, U. Steiner and co-workers destabilise polymer trilayer films using an electric field to generate separated micrometre-sized core-shell pillars, which are further modified by selective polymer dissolution to yield polymer core columns surrounded by a rim and micro-volcano rim structures. When coated with gold and decorated with Raman active probes, all three structure types give rise to substantial enhancement in surface-enhanced Raman scattering (SERS). Since this SERS enhancement arises from each of the isolated structures in the array, these surface patterns are an ideal platform for multiplexed SERS detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of multiple scattering on acoustic manipulation of spherical particles using helicoidal Bessel-beams are discussed. A closed-form analytical solution is developed to calculate the acoustic radiation force resulting from a Bessel-beam on an acoustically reflective sphere, in the presence of an adjacent spherical particle, immersed in an unbounded fluid medium. The solution is based on the standard Fourier decomposition method and the effect of multi-scattering is taken into account using the addition theorem for spherical coordinates. Of particular interest here is the investigation of the effects of multiple scattering on the emergence of negative axial forces. To investigate the effects, the radiation force applied on the target particle resulting from a helicoidal Bessel-beam of different azimuthal indexes (m = 1 to 4), at different conical angles, is computed. Results are presented for soft and rigid spheres of various sizes, separated by a finite distance. Results have shown that the emergence of negative force regions is very sensitive to the level of cross-scattering between the particles. It has also been shown that in multiple scattering media, the negative axial force may occur at much smaller conical angles than previously reported for single particles, and that acoustic manipulation of soft spheres in such media may also become possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrasound image is created from backscattered echoes originating from both diffuse and directional scattering. It is potentially useful to separate these two components for the purpose of tissue characterization. This article presents several models for visualization of scattering fields on 3-dimensional (3D) ultrasound imaging. By scanning the same anatomy from multiple directions, we can observe the variation of specular intensity as a function of the viewing angle. This article considers two models for estimating the diffuse and specular components of the backscattered intensity: a modification of the well-known Phong reflection model and an existing exponential model. We examine 2-dimensional implementations and also propose novel 3D extensions of these models in which the probe is not constrained to rotate within a plane. Both simulation and experimental results show that improved performance can be achieved with 3D models. © 2013 by the American Institute of Ultrasound in Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic, electrical and thermal transport properties of the perovskite La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the "double-bump" feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T) are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system. © 2005 Chinese Physical Society and IOP Publishing Ltd.