148 resultados para Piezoelectric actuators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators. © 2012 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of acceleration in dynamic tests is carried out routinely, and in most cases, piezoelectric accelerometers are used at present. However, a new class of instruments based on MEMS technology have become available and are gaining use in many applications due to their small size, low mass and low-cost. This paper describes a centrifuge lateral spreading experiment in which MEMS and piezoelectric accelerometers were placed at similar depths. Good agreement was obtained when the instruments were located in dense sands, but significant differences were observed in loose, liquefiable soils. It was found that the performance of the piezoelectric accelerometer is poor at low frequency, and that the relative phase difference between the piezoelectric and MEMS accelerometer varies significantly at low frequency. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO thin film bulk acoustic resonators (FBARs) with resonant frequency of ∼1.5 GHz have been fabricated to function as an odorant biosensor. Physical adsorption of an odorant binding protein (AaegOBP22 from Aedes aegypti) resulted in frequency down shift. N,N-diethyl-meta-toluamide (DEET) has been selected as a ligand to the odorant binding protein (OBP). Alternate exposure of the bare FBARs to nitrogen flow with and without DEET vapor did not cause any noticeable frequency change. However, frequency drop was detected when exposing the OBP loaded FBAR sensors to the nitrogen flow containing DEET vapor against nitrogen flow alone (control) and the extent of frequency shift was proportional to the amount of the protein immobilized on the FBAR surface, indicating a linear response to DEET binding. These findings demonstrate the potential of binding protein functionalized FBARs as odorant biosensors. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic centrifuge modelling has been carried out at Cambridge since the late 1970s. Over this period, three different mechanical earthquake actuators were developed. In this paper the development of a new servo-hydraulic earthquake actuator is described. The basic design principles are explained along with the need to carry out these designs to match the existing services and systems of the 35 year old Turner beam centrifuge at Cambridge. In addition, some of the features of the Turner beam centrifuge are exploited in the design of this new earthquake actuator. The paper also explains the mechanical fabrication of the actuator and the control systems that were developed in order to generate real earthquake motions. Finally, the performance of this new servo-hydraulic earthquake actuator is presented and assessed based on a wide range of earthquake input motions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative microbeam Rutherford backscattering (RBS) analysis with a 1.5 MeV 4He+ beam has determined limits on the purity of copper deposited on glass with a novel inkjet process. A tetravinyl silane tetrakisCu(I) 1,1,1,5,5,5-hexafluoroacetylacetonate (TVST[Cu]hfac) complex was heated to 70 °C and jetted onto the glass substrate through a piezoelectric ceramic print head in droplets about 0.5 mm diameter. The substrate temperature was 150 °C. Solid well-formed deposits resulted which have a copper content greater than about 90% by weight. The RBS spectra were analysed objectively using the DataFurnace code, with the assumption that the deposit was CuOx, and the validity of different assumed values of x being tested. The assumptions and the errors of the analysis are critically evaluated. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel MPC strategy is proposed, and referred to as asso MPC. The new paradigm features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. This cost choice is motivated by the successful development of LASSO theory in signal processing and machine learning. In the latter fields, sum-of-norms regularisation have shown a strong capability to provide robust and sparse solutions for system identification and feature selection. In this paper, a discrete-time dual-mode asso MPC is formulated, and its stability is proven by application of standard MPC arguments. The controller is then tested for the problem of ship course keeping and roll reduction with rudder and fins, in a directional stochastic sea. Simulations show the asso MPC to inherit positive features from its corresponding regressor: extreme reduction of decision variables' magnitude, namely, actuators' magnitude (or variations), with a finite energy error, being particularly promising for over-actuated systems. © 2012 AACC American Automatic Control Council).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly sensitive nonenzymatic amperometric glucose sensor was fabricated by using Ni nanoparticles homogeneously dispersed within and on the top of a vertically aligned CNT forest (CNT/Ni nanocomposite sensor), which was directly grown on a Si/SiO2 substrate. The surface morphology and elemental analysis were characterized using scanning electron microscopy and energy dispersive spectroscopy, respectively. Cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activities of CNT/Ni electrode. The CNT/Ni nanocomposite sensor exhibited a great enhancement of anodic peak current after adding 5 mM glucose in alkaline solution. The sensor can also be applied to the quantification of glucose content with a linear range covering from 5 μM to 7 mM, a high sensitivity of 1433 μA mM-1 cm-2, and a low detection limit of 2 μM. The CNT/Ni nanocomposite sensor exhibits good reproducibility and long-term stability, moreover, it was also relatively insensitive to commonly interfering species, such as uric acid, ascorbic acid, acetaminophen, sucrose and d-fructose. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quartz crystal resonator has been traditionally employed in studying surface-confined physisorbed films and particles by measuring dissipation and frequency shifts. However, theoretical interpretation of the experimental observations is often challenged due to limited understanding of physical interaction mechanisms at the interfaces involved. Here we model a physisorbed interaction between particles and gold electrode surface of a quartz crystal and demonstrate how the nonlinear modulation of the electric response of the crystal due to the nonlinear interaction forces may be used to study the dynamics of the particles. In particular, we show that the graphs of the deviation in the third Fourier harmonic response versus oscillation amplitude provide important information about the onset, progress and nature of sliding of the particles. The graphs also present a signature of the surface-particle interaction and could be used to estimate the interaction energy profile. Interestingly, the insights gained from the model help to explain some of the experimental observations with physisorbed streptavidin-coated polystyrene microbeads on quartz resonators. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon's performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°. © 2012 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants as well as other biological organisms achieve directed movements by fibres that constraint and direct the isotropic expansion of a matrix material. In order to mimic these actuators, complex arrangements of rigid fibres must be achieved, which is challenging, especially at small scales. In this paper, a new method to organize carbon nanotubes (CNTs) into complex shapes is employed to create a framework for hydrogel infiltration. These CNT frameworks can be realized as iris, needle and bridge architectures, and after hydrogel infiltration, they show directed actuation in response to water uptake. Finally, we show how the latter can be employed as a novel hygroscopic sensor. © 2011 IEEE.