139 resultados para Passive recovery
Resumo:
A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m × 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m 8m and 10m × 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system. © 2012 IEEE.
Resumo:
There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.
Resumo:
This paper investigates the possibility of improving the performance of railway vehicle suspensions by incorporating a newly developed mechanical device known as the inerter. A comparative study of several low-complexity passive suspension layouts is made. Improved performance for the lateral and vertical ride comfort, as well as lateral body movement when curving are demonstrated in comparison with the conventional suspension layout. The constraints imposed are to maintain the same level of other performance metrics. The calculations and optimisations are based on linearised plan-view and side-view high-speed train mathematical models. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this.We study how this spiral mode of vortex breakdown might be suppressed or promoted. We use a Lagrangian approach to identify regions of the flow which are sensitive to small open-loop steady and unsteady (harmonic) forces. We find these regions to be upstream of the vortex breakdown bubble. We investigate passive control using a small axisymmetric control ring. In this case, the steady and unsteady control forces are caused by the drag force on the control ring. We find a narrow region upstream of the bubble where the control ring will stabilise the flow and we verify this using numerical simulations. © 2012 IEEE.
Resumo:
This paper theoretically investigates the application of tuned vibration absorbers and hybrid passive/active inertial actuators to reduce the vibrational responses of plates and shells. The passive/active actuators are initially applied to a simple plate. A model of a submerged hull consisting of a ring stiffened finite cylinder with bulkheads and external fluid loading is then considered. The fluctuating forces from the propeller result in excitation of the low frequency global hull modes. Inertial actuators and tuned vibration absorbers are located at each end of the hull and in circumferential arrays to reduce the hull structural response at its axial resonances. The control performance of the hybrid passive/active inertial actuator, where the passive component is tuned to a structural resonance, is compared to the attenuation achieved by a fully passive tuned vibration absorber. This work shows the potential of using hybrid passive/active inertial actuators to attenuate the global structural responses of a submerged vessel.
Resumo:
This paper presents a long range and effectively error-free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system. The system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. The novel technique is first theoretically modelled using a Rician fading channel. It is shown that conventional RFID systems suffer from multi-path fading resulting in nulls in radio environments. We, for the first time, demonstrate that the nulls can be moved around by varying the phase and frequency of the interrogation signals in a multi-antenna system. As a result, much enhanced coverage can be achieved. A proof of principle prototype RFID system is built based on an Impinj R2000 transceiver. The demonstrator system shows that the new approach improves the tag detection accuracy from <50% to 100% and the tag backscatter signal strength by 10dB over a 20 m x 9 m area, compared with a conventional switched multi-antenna RFID system.
Resumo:
A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m x 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m x 8m and 10m x 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system.
Resumo:
Optically-fed distributed antenna system (DAS) technology is combined with passive ultra high frequency (UHF) radio frequency identification (RFID). It is shown that RFID signals can be carried on directly modulated radio over fiber links without impacting their performance. It is also shown that a multi-antenna DAS can greatly reduce the number of nulls experienced by RFID in a complex radio environment, increasing the likelihood of successful tag detection. Consequently, optimization of the DAS reduces nulls further. We demonstrate RFID tag reading using a three antenna DAS system over a 20mx6m area, limited by building constraints, where 100% of the test points can be successfully read. The detected signal strength from the tag is also observed to increase by an average of approximately 10dB compared with a conventional switched multi-antenna RFID system. This improvement is achieved at +31dBm equivalent isotropically radiated power (EIRP) from all three antenna units (AUs).
Resumo:
Ubiquitous in-building Real Time Location Systems (RTLS) today are limited by costly active radio frequency identification (RFID) tags and short range portal readers of low cost passive RFID tags. We, however, present a novel technology locates RFID tags using a new approach based on (a) minimising RFID fading using antenna diversity, frequency dithering, phase dithering and narrow beam-width antennas, (b) measuring a combination of RSSI and phase shift in the coherent received tag backscatter signals and (c) being selective of use of information from the system by, applying weighting techniques to minimise error. These techniques make it possible to locate tags to an accuracy of less than one metre. This breakthrough will enable, for the first time, the low-cost tagging of items and the possibility of locating them at relatively high precision.
Resumo:
This paper presents a new wireless radio frequency identification (RFID) repeater system, facilitating remote interrogation without the need for arrays of wired antennas, despite using entirely passive, low-cost ultra high frequency (UHF) RFID tags. The proposed system comprises a master RFID reader with both transmit and receive functions, and multiple RFID repeaters to receive, amplify and retransmit tag-to-reader and reader-to-tag communications. This expands the area over which the master RFID reader may provide coverage for a given maximum transmit power at each antenna. We first demonstrate a single hop wireless repeater system to allow similar read performance to a standard commercial passive UHF RFID reader. Finally, a proof of principle system demonstrates that a single wireless repeater node can allow an extension in range.
Resumo:
In economic decision making, outcomes are described in terms of risk (uncertain outcomes with certain probabilities) and ambiguity (uncertain outcomes with uncertain probabilities). Humans are more averse to ambiguity than to risk, with a distinct neural system suggested as mediating this effect. However, there has been no clear disambiguation of activity related to decisions themselves from perceptual processing of ambiguity. In a functional magnetic resonance imaging (fMRI) experiment, we contrasted ambiguity, defined as a lack of information about outcome probabilities, to risk, where outcome probabilities are known, or ignorance, where outcomes are completely unknown and unknowable. We modified previously learned pavlovian CS+ stimuli such that they became an ambiguous cue and contrasted evoked brain activity both with an unmodified predictive CS+ (risky cue), and a cue that conveyed no information about outcome probabilities (ignorance cue). Compared with risk, ambiguous cues elicited activity in posterior inferior frontal gyrus and posterior parietal cortex during outcome anticipation. Furthermore, a similar set of regions was activated when ambiguous cues were compared with ignorance cues. Thus, regions previously shown to be engaged by decisions about ambiguous rewarding outcomes are also engaged by ambiguous outcome prediction in the context of aversive outcomes. Moreover, activation in these regions was seen even when no actual decision is made. Our findings suggest that these regions subserve a general function of contextual analysis when search for hidden information during outcome anticipation is both necessary and meaningful.
Resumo:
The aim of this study was to explore how the remote control of appliances/lights (active energy management system) affected household well-being, compared to in-home displays (passive energy management system). A six-week exploratory study was conducted with 14 participants divided into the following three groups: active; passive; and no equipment. The effect on well-being was measured through thematic analysis of two semi-structured interviews for each participant, administered at the start and end of the study. The well-being themes were based on existing measures of Satisfaction and Affect. The energy demand for each participant was also measured for two weeks without intervention, and then compared after four weeks with either the passive or active energy management systems. These measurements were used to complement the well-being analysis. Overall, the measure of Affect increased in the passive group but Satisfaction decreased; however, all three measures on average decreased in the active group. The measured energy demand also highlighted a disconnect between well-being and domestic energy consumption. The results point to a need for further investigation in this field; otherwise, there is a risk that nationally implemented energy management solutions may negatively affect our happiness and well-being. © 2013 Elsevier Ltd.
Resumo:
An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.