125 resultados para PREJUDICE-REDUCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papermaking is considered as an energy-intensive industry partly due to the fact that the machinery and procedures have been designed at the time when energy was both cheap and plentiful. A typical paper machine manufactures a variety of different products (grades) which impose variable per-unit raw material and energy costs to the mill. It is known that during a grade change operation the products are not market-worthy. Therefore, two different production regimes, i.e. steady state and grade transition can be recognised in papermaking practice. Among the costs associated with paper manufacture, the energy cost is 'more variable' due to (usually) day-to-day variations of the energy prices. Moreover, the production of a grade is often constrained by customer delivery time requirements. Given the above constraints and production modes, the product scheduling technique proposed in this paper aims at optimising the sequence of orders in a single machine so that the cost of production (mainly determined by the energy) is minimised. Simulation results obtained from a commercial board machine in the UK confirm the effectiveness of the proposed method. © 2011 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the use of magnetic materials to divert flux in high-temperature superconductor superconducting coils and reduce transport ac loss is investigated. This particular technique is preferred over other techniques, such as striation, Roebel transposition, and twisted wires because it does not require modification to the conductor itself, which can be detrimental to the properties of the superconductor. The technique can also be implemented for existing coils. The analysis is carried out using a coil model based on the H formulation and implemented in comsol multiphysics. Both weakly and strongly magnetic materials are investigated, and it is shown that the use of such materials can divert flux and achieve a reduction in transport ac loss, which, in some cases, is quite significant. This analysis acts to provide a foundation for further optimization and experimental work in the future. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to volitionally regulate emotions helps to adapt behavior to changing environmental demands and can alleviate subjective distress. We show that a cognitive strategy of detachment attenuates subjective and physiological measures of anticipatory anxiety for pain and reduces reactivity to receipt of pain itself. Using functional magnetic resonance imaging, we locate the potential site and source of this modulation of anticipatory anxiety in the medial prefrontal/anterior cingulate and anterolateral prefrontal cortex, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The edge is modelled as a thin plate poroelastic plate, which is known to admit fifth-, sixth-, and seventh-power noise dependences on a characteristic velocity U of the turbulent eddy. The associated acoustic scattering problem is solved using the Wiener-Hopf technique for the case of constant plate properties. For the special cases of porous-rigid and impermeable-elastic plate conditions, asymptotic analysis of the Wiener- Hopf kernel function furnishes the parameter groups and their ranges where U5, U6, and U7 behaviours are expected to occur. Results from this analysis attempt to help guide the search for passive edge treatments to reduce trailing-edge noise that are inspired by the wing features of silently flying owls. Furthermore, the appropriateness of the present model to the owl noise problem is discussed with respect to the acoustic frequencies of interest, wing chord-lengths, and foraging behaviour across a representative set of owl species.