110 resultados para Nuclear reactor accidents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conversion LWRs concepts typically rely on a heterogeneous core configuration, where fissile zones are interspersed with fertile blanket zones in order to achieve a high conversion ratio. Modeling such a heterogeneous structure of these cores represents a significant challenge to the conventional reactor analysis methods. It was recently suggested to overcome such difficulties, in particular, for the case of axially heterogeneous reduced moderation BWRs, by introducing an additional set of discontinuity factors in axial direction at the interfaces between fissile and fertile fuel assembly zones. However, none of the existing nodal diffusion core simulators have the capability of accounting for discontinuity of homogeneous nodal fluxes in axial direction since the fuel composition of conventional LWRs is much more axially uniform. In this work, we modified the nodal diffusion code DYN3D by introducing such a capability. The new version of the code was tested on a series of reduced moderation BWR cases with Th-U233 and U-Pu-MA fuel. The library of few-group homogenized cross sections and the data required for the calculation of discontinuity factors were generated using the Monte Carlo transport code Serpent. The results obtained with the modified version of DYN3D were compared with the reference Monte Carlo solutions and were found to be in good agreement. The current analysis demonstrates that high conversion LWRs can in principle be modeled using existing nodal diffusion core simulators. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents stochastic implicit coupling method intended for use in Monte-Carlo (MC) based reactor analysis systems that include burnup and thermal hydraulic (TH) feedbacks. Both feedbacks are essential for accurate modeling of advanced reactor designs and analyses of associated fuel cycles. In particular, we investigate the effect of different burnup-TH coupling schemes on the numerical stability and accuracy of coupled MC calculations. First, we present the beginning of time step method which is the most commonly used. The accuracy of this method depends on the time step length and it is only conditionally stable. This work demonstrates that even for relatively short time steps, this method can be numerically unstable. Namely, the spatial distribution of neutronic and thermal hydraulic parameters, such as nuclide densities and temperatures, exhibit oscillatory behavior. To address the numerical stability issue, new implicit stochastic methods are proposed. The methods solve the depletion and TH problems simultaneously and use under-relaxation to speed up convergence. These methods are numerically stable and accurate even for relatively large time steps and require less computation time than the existing methods. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10MeV and 1mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered.