131 resultados para Long Cylinder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective data communications between the project site and decision making office can be critical for the success of a construction project. It allows convenient access to centrally stored information and allows centrally located decision makers to remotely monitor the site and collect data in real-time. However, high bandwidth, flexible data communication networks, such as wired local area networks, can often be time-consuming and costly to deploy for such purposes especially when project sites (dams, highways, etc.) are located in rural, undeveloped areas where networking infrastructure is not available. In such construction sites, wireless networking could reliably link the construction site and the decision-making office. This paper presents a case study on long-distance, site – office wireless data communications. The purpose was to investigate the capability of wireless technology in exchanging construction data in a fast and efficient manner and in allowing site personnel to interact and share knowledge and data with the office staff. This study took place at the University of Michigan’s campus where performance, reliability, and cost/benefit tests were performed. The indoor and outdoor tests performed demonstrated the suitability of this technology for office-site data communications and exposed the need for more research to further improve the reliability and data handling of this technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents hydraulic conductivity, unconfined compression strength (UCS) and triaxial test results of an 11 year old slag-cement-bentonite (CB) cut-off wall material and identifies factors affecting their long-term performance. The laboratory tests were performed on three types of CB samples ranging from contaminated block field samples to uncontaminated laboratory cast samples. The results showed that hydraulic conductivity reduces till 3 years and UCS increases till 90 days, but there after it remains constant till 11 years of age. The mean hydraulic conductivity and UCS values of block field samples are inferior and have large variability than laboratory cured samples. Such variations are mainly because of heterogeneity caused by aggressive environment and impurities within the specimen. Consolidated undrained triaxial test found that under an effective confining pressure of less than 200 kPa, tension failure occurred since the minor principal stress dropped to zero value at failure. The research outcome is useful for understanding future liability of CB wall and improving their design. © 2009 IOS Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The twin-tunnel construction of the Jubilee Line Extension tunnels beneath St James's Park was simulated using coupled-consolidation finite-element analyses. The effect of defining different permeabilities for the final consolidation stage was investigated, and the performance of a fissure softening model was also evaluated. The analyses suggested an unexpectedly high permeability anisotropy for soil around the tunnel crown, possibly due to stress-induced permeability changes, or low-permeability laminations. Also, the permeability profile and lining conductivity were found to differ between the tunnels. Inclusion of the fissure model gave a narrower settlement trough, more alike that in the field, by preferentially softening simple shear behaviour. Long-term settlements at the site continue to increase at an unexpectedly high rate, suggesting the possibility of creep or unexpected soil softening during excavation. © 2012 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absence of adequate inspection data from difficult-to-access areas on pipelines, such as cased-road crossings, makes determination of fitness for continued service and compliance with increasingly stringent regulatory requirements problematic. Screening for corrosion using long-range guided wave testing is a relatively new inspection technique. The complexity of the possible modes of vibration means the technique can be difficult to implement effectively but this also means that it has great potential for both detecting and characterizing flaws. The ability to determine flaw size would enable the direct application of standard procedures for determining fitness-for-service, such as ASME B31G, RSTRENG, or equivalent for tens of metres of pipeline from a single inspection location. This paper presents a new technique for flaw sizing using guided wave inspection data. The technique has been developed using finite element models and experimentally validated on 6'' Schedule 40 steel pipe. Some basic fitness-for-service assessments have been carried out using the measured values and the maximum allowable operating pressure was accurately determined. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both MgB2 and (RE)BCO bulk materials can provide a highly compact source of magnetic field when magnetized. The properties of these materials when magnetized by a pulsed field are potentially useful for a number of applications, including magnetic levitation. This paper reports on pulsed field magnetization of single 25 mm diameter (RE)BCO bulks using a recently constructed pulse magnetization facility, which allows an automated sequence of pulses to be delivered. The facility allows measurement of force between a magnetized (RE)BCO bulk and a bulk MgB2 hollow cylinder, which is field cooled in the field of the magnetized (RE)BCO bulk. Hysteresis cycling behavior for small displacement is also measured to extract the stiffness value. The levitation forces up to 500 N were obtained, the highest ever measured between two bulks and proves the concept of a bulk-bulk superconducting bearing design. © 2002-2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the magnetic properties of bulk high temperature superconducting cylinders used as magnetic shields. We investigate, both numerically and experimentally, the magnetic properties of a hollow cylinder with two axial slits which cut the cylinder in equal halves. Finite element method modelling has been used with a three-dimensional geometry to help us in understanding how the superconducting currents flow in such a cut cylinder and therefore how the magnetic shielding properties are affected, depending on the magnetic field orientation. Modelling results show that the slits block the shielding current flow and act as an entrance channel for the magnetic flux lines. The contribution of the slits to the total flux density that enters the cylinder is studied through the angle formed between the applied field and the internal field. The modelled data agree nicely with magnetic shielding properties measured on a bulk Bi-2212 hollow cylinder at 77K. The results demonstrate that the magnetic flux penetration in such a geometry can be modelled successfully using only two parameters of the superconductor (constant J c and n value), which were determined from magnetic measurements on the plain cylinder. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future microrobotic applications require actuators that can generate a high actuation force in a limited volume. Up to now, little research has been performed on the development of pneumatic or hydraulic microactuators, although they offer great prospects in achieving high force densities. In addition, large actuation strokes and high actuation speeds can be achieved by these actuators. This paper describes a fabrication process for piston-cylinder pneumatic and hydraulic actuators based on etching techniques, UV-definable polymers, and low-temperature bonding. Prototype actuators with a piston area of 0.15 mm2 have been fabricated in order to validate the production process. These actuators achieve actuation forces of more than 0.1 N and strokes of 750 μm using pressurized air or water as driving fluid. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gold standard in surgical management of a peripheral nerve gap is currently autologous nerve grafting. This confers patient morbidity and increases surgical time therefore innovative experimental strategies towards engineering a synthetic nerve conduit are welcome. We have developed a novel synthetic conduit made of poly ε-caprolactone (PCL) that has demonstrated promising peripheral nerve regeneration in short-term studies. This material has been engineered to permit translation into clinical practice and here we demonstrate that histological outcomes in a long-term in vivo experiment are comparable with that of autologous nerve grafting. A 1cm nerve gap in a rat sciatic nerve injury model was repaired with a PCL nerve conduit or an autologous nerve graft. At 18 weeks post surgical repair, there was a similar volume of regenerating axons within the nerve autograft and PCL conduit repair groups, and similar numbers of myelinated axons in the distal stump of both groups. Furthermore, there was evidence of comparable re-innervation of end organ muscle and skin with the only significant difference the lower wet weight of the muscle from the PCL conduit nerve repair group. This study stimulates further work on the potential use of this synthetic biodegradable PCL nerve conduit in a clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation. The major difficulties, including load torque estimation and separation of pressure profile from adjacent-firing cylinders, are addressed in this work and solutions to each problem are given respectively. The experimental results conducted on a multi-cylinder diesel engine have shown that the proposed method successfully estimate a more accurate cylinder pressure over a wider range of crankshaft angles. Copyright © 2012 SAE International.