138 resultados para Load components


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for which the optimal solution is a limit cycle. Regarding the marine boiler control the aim is to find an optimal control strategy which minimizes a trade-off between deviations in boiler pressure and water level from their respective setpoints while limiting burner switches.The approach taken is based on the Mixed Logic Dynamical framework. The whole boiler systems is modelled in this framework and a model predictive controller is designed. However to facilitate on-line implementation only a small part of the search tree in the mixed integer optimization is evaluated to find out whether a switch should occur or not. The strategy is verified on a simulation model of the compact marine boiler for control of low/high burner load switches. It is shown that even though performance is adequate for some disturbance levels it becomes deteriorated when the optimal solution is a limit cycle. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swaging is a cold working process involving plastic deformation of the work piece to change its shape. A swaged joint is a connection between two components whereby a swaging tool induces plastic deformation of the components at their junction to effectively bind them together. This is commonly used when welding or other standard joining techniques are not viable. Swaged joints can be found for example, in nuclear fuel assemblies to connect the edges of thin rectangular plates to a supporting structure or frame. The aim of this work is to find a model to describe the vibrational behaviour of a swaged joint and to estimate its strength in resisting a longitudinally applied load. The finite element method and various experimental rigs were used in order to find relationships between the natural frequencies of the plate, the joint stiffness and the force required to shift the plate against the restraining action of the swage connection. It is found that a swaged joint is dynamically equivalent to a simple support with the rotation elastically restrained and a small stiffness is enough to resist an important load. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In current practice the strength evaluation of a bridge system is typically based on firstly using elastic analysis to determine the distribution of load effects in the elements and then checking the ultimate section capacity of those elements. Ductility of the components in most bridge structures permits local yield and subsequent redistribution of the applied loads from the most heavily loaded elements. As a result a bridge can continue to carry additional loading even after one member has yielded, which has conventionally been adopted as the "failure criterion" in bridge strength evaluation. This means that a bridge with inherent redundancy has additional reserves of strength such that the failure of one element does not result in the failure of the complete system. For these bridges warning signs will show up and measures can be undertaken before the ultimate collapse is happening. This paper proposes a rational methodology for calculating the ultimate system strength and including in bridge evaluation the warning level due to redundancy. © 2004 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A friction test rig has been developed to carry out repeated sliding friction tests for premium tubular connections. The test rig enables accurate measurement of friction in various contact regimes which are relevant to the threaded connections between tubular components. Higher load tests can simulate the contact in metal-to-metal seals under very high contact pressures by using perpendicular pin-on-pin tests. The contact in the thread loading flank under intermediate pressures can be simulated by using larger radius coupon-on-coupon tests. The measured coefficient of friction is well correlated with a lubrication parameter combining lubricant film thickness and initial surface roughness. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The philosophical aspects of applying the principles of biomimicry are explored in a case study of structural design. Integrating structural engineering with services engineering can be regarded, to some extent, as taking principles from biological systems and applying them to large-scale conceptual design. The end-product discussed herein a so-called load-bearing duct, a functional naturally ventilated multi-storey office building that takes the applied loading efficiently both structurally and cost-effectively giving it the potential to be sustainable throughout its design life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study unsupervised learning in a probabilistic generative model for occlusion. The model uses two types of latent variables: one indicates which objects are present in the image, and the other how they are ordered in depth. This depth order then determines how the positions and appearances of the objects present, specified in the model parameters, combine to form the image. We show that the object parameters can be learnt from an unlabelled set of images in which objects occlude one another. Exact maximum-likelihood learning is intractable. However, we show that tractable approximations to Expectation Maximization (EM) can be found if the training images each contain only a small number of objects on average. In numerical experiments it is shown that these approximations recover the correct set of object parameters. Experiments on a novel version of the bars test using colored bars, and experiments on more realistic data, show that the algorithm performs well in extracting the generating causes. Experiments based on the standard bars benchmark test for object learning show that the algorithm performs well in comparison to other recent component extraction approaches. The model and the learning algorithm thus connect research on occlusion with the research field of multiple-causes component extraction methods.