124 resultados para Linear differential systems
Resumo:
Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.
Resumo:
This work is concerned with the characteristics of the impact force produced when two randomly vibrating elastic bodies collide with each other, or when a single randomly vibrating elastic body collides with a stop. The impact condition includes a non-linear spring, which may represent, for example, a Hertzian contact, and in the case of a single body, closed form approximate expressions are derived for the duration and magnitude of the impact force and for the maximum deceleration at the impact point. For the case of two impacting bodies, a set of algebraic equations are derived which can be solved numerically to yield the quantities of interest. The approach is applied to a beam impacting a stop, a plate impacting a stop, and to two impacting beams, and in each case a comparison is made with detailed numerical simulations. Aspects of the statistics of impact velocity are also considered, including the probability that the impact velocity will exceed a specified value within a certain time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The chapter reviews properties and applications of linear semiconductor optical amplifiers (SOA). Section 12.1 covers SOA basics, including working principles, material systems, structures and their growth. Booster or inline amplifiers as well as low-noise preamplifiers are classified. Section 12.2 discusses the influence of parameters like gain, noise figure, gain saturation, gain and phase dynamics, and alpha-factor. In Sect. 12.3, the application of a linear SOA as a reach extender in future access networks is addressed. The input power dynamic range is introduced, and measurements for on-off keying and phase shift keying signals are shown. Section 12.4 presents the state of the art for commercially available SOA and includes a treatment of reflective SOAs (RSOA) as well. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Networked control systems (NCSs) have attracted much attention in the past decade due to their many advantages and growing number of applications. Different than classic control systems, resources in NCSs, such as network bandwidth and communication energy, are often limited, which degrade the closed-loop system performance and may even cause the system to become unstable. Seeking a desired trade-off between the closed-loop system performance and the limited resources is thus one heated area of research. In this paper, we analyze the trade-off between the sensor-to-controller communication rate and the closed-loop system performance indexed by the conventional LQG control cost. We present and compare several sensor data schedules, and demonstrate that two event-based sensor data schedules provide better trade-off than an optimal offline schedule. Simulation examples are provided to illustrate the theories developed in the paper. © 2012 AACC American Automatic Control Council).
Resumo:
Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.
Resumo:
We introduce a characterization of contraction for bounded convex sets. For discrete-time multi-agent systems we provide an explicit upperbound on the rate of convergence to a consensus under the assumptions of contractiveness and (weak) connectedness (across an interval.) Convergence is shown to be exponential when either the system or the function characterizing the contraction is linear. Copyright © 2007 IFAC.
Resumo:
We study the problem of finding a local minimum of a multilinear function E over the discrete set {0,1}n. The search is achieved by a gradient-like system in [0,1]n with cost function E. Under mild restrictions on the metric, the stable attractors of the gradient-like system are shown to produce solutions of the problem, even when they are not in the vicinity of the discrete set {0,1}n. Moreover, the gradient-like system connects with interior point methods for linear programming and with the analog neural network studied by Vidyasagar (IEEE Trans. Automat. Control 40 (8) (1995) 1359), in the same context. © 2004 Elsevier B.V. All rights reserved.
Resumo:
This note analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a Stable nonlinear system. It is shown that the instability of the zeros of the linear System can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static-state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
This paper analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
This paper presents some new criteria for uniform and nonuniform asymptotic stability of equilibria for time-variant differential equations and this within a Lyapunov approach. The stability criteria are formulated in terms of certain observability conditions with the output derived from the Lyapunov function. For some classes of systems, this system theoretic interpretation proves to be fruitful since - after establishing the invariance of observability under output injection - this enables us to check the stability criteria on a simpler system. This procedure is illustrated for some classical examples.
Resumo:
The notion of coupling within a design, particularly within the context of Multidisciplinary Design Optimization (MDO), is much used but ill-defined. There are many different ways of measuring design coupling, but these measures vary in both their conceptions of what design coupling is and how such coupling may be calculated. Within the differential geometry framework which we have previously developed for MDO systems, we put forth our own design coupling metric for consideration. Our metric is not commensurate with similar types of coupling metrics, but we show that it both provides a helpful geo- metric interpretation of coupling (and uncoupledness in particular) and exhibits greater generality and potential for analysis than those similar metrics. Furthermore, we discuss how the metric might be profitably extended to time-varying problems and show how the metric's measure of coupling can be applied to multi-objective optimization problems (in unconstrained optimization and in MDO). © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Multidisciplinary Design Optimization (MDO) is a methodology for optimizing large coupled systems. Over the years, a number of different MDO decomposition strategies, known as architectures, have been developed, and various pieces of analytical work have been done on MDO and its architectures. However, MDO lacks an overarching paradigm which would unify the field and promote cumulative research. In this paper, we propose a differential geometry framework as such a paradigm: Differential geometry comes with its own set of analysis tools and a long history of use in theoretical physics. We begin by outlining some of the mathematics behind differential geometry and then translate MDO into that framework. This initial work gives new tools and techniques for studying MDO and its architectures while producing a naturally arising measure of design coupling. The framework also suggests several new areas for exploration into and analysis of MDO systems. At this point, analogies with particle dynamics and systems of differential equations look particularly promising for both the wealth of extant background theory that they have and the potential predictive and evaluative power that they hold. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Dissipativity is an essential concept of systems theory. The paper provides an extension of dissipativity, named differential dissipativity, by lifting storage functions and supply rates to the tangent bundle. Differential dissipativity is connected to incremental stability in the same way as dissipativity is connected to stability. It leads to a natural formulation of differential passivity when restricting to quadratic supply rates. The paper also shows that the interconnection of differentially passive systems is differentially passive, and provides preliminary examples of differentially passive electrical systems. © IFAC.