213 resultados para Line geometry
Resumo:
This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.
Resumo:
The Silent Aircraft airframe has a flying wing design with a large wing planform and a propulsion system embedded in the rear of the airframe with intake on the upper surface of the wing. In the present paper, boundary element calculations are presented to evaluate acoustic shielding at low frequencies. Besides the three-dimensional geometry of the Silent Aircraft airframe, a few two-dimensional problems are considered that provide some physical insight into the shielding calculations. Mean flow refraction effects due to forward flight motion are accounted for by a simple time transformation that decouples the mean-flow and acoustic-field calculations. It is shown that significant amount of shielding can be obtained in the shadow region where there is no direct line of sight between the source and observer. The boundary element solutions are restricted to low frequencies. We have used a simple physically-based model to extend the solution to higher frequencies. Based on this model, using a monopole acoustic source, we predict at least an 18 dBA reduction in the overall sound pressure level of forward-propagating fan noise because of shielding.