127 resultados para Isosteric Heat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.