173 resultados para INTERACTIVE FEEDBACK
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.
Resumo:
CLADP is an engineering software program developed at Cambridge University for the interactive computer aided design of feedback control systems. CLADP contains a wide range of tools for the analysis of complex systems, and the assessment of their performance when feedback control is applied, thus enabling control systems to be designed to meet difficult performance objectives. The range of tools within CLADP include the latest techniques in the field whose central theme is the extension of classical frequency domain concepts (well known and well proven for single loop systems) to multivariable or multiloop systems, and by making extensive use of graphical presentation information is provided in a readily understood form.
Resumo:
This paper investigates a method of automatic pronunciation scoring for use in computer-assisted language learning (CALL) systems. The method utilizes a likelihood-based `Goodness of Pronunciation' (GOP) measure which is extended to include individual thresholds for each phone based on both averaged native confidence scores and on rejection statistics provided by human judges. Further improvements are obtained by incorporating models of the subject's native language and by augmenting the recognition networks to include expected pronunciation errors. The various GOP measures are assessed using a specially recorded database of non-native speakers which has been annotated to mark phone-level pronunciation errors. Since pronunciation assessment is highly subjective, a set of four performance measures has been designed, each of them measuring different aspects of how well computer-derived phone-level scores agree with human scores. These performance measures are used to cross-validate the reference annotations and to assess the basic GOP algorithm and its refinements. The experimental results suggest that a likelihood-based pronunciation scoring metric can achieve usable performance, especially after applying the various enhancements.
Resumo:
The purpose of this paper is to highlight the central role that the time asymmetry of stability plays in feedback control. We show that this provides a new perspective on the use of doubly-infinite or semi-infinite time axes for signal spaces in control theory. We then focus on the implication of this time asymmetry in modeling uncertainty, regulation and robust control. We point out that modeling uncertainty and the ease of control depend critically on the direction of time. We finally discuss the relationship of this control-based time arrow with the well-known arrows of time in physics. © 2008 IEEE.