158 resultados para Hardness testing
Resumo:
A pair of blades were constructed following a Tapered Chord, Zero Twist pattern after Anderson. The construction uses the Wood Epoxy Saturation Technique, with a solid Beech main spar and leading edge joined together with laminated veneers of beech forming a D-section; the trailing edge is formed from millimetre ply skins, foam filled to resist compressive loads. This construction leads to an extremely light, flexible blade, with the centres of gravity and torsion well forward, giving good stability. Each blade has three built-in strain gauges, alowing flapwise bending to be measured. Stiffness, and natural frequencies, were measured, to input to a numerical computer model to calculate blade deformation during operation, and to determine stability boundaries of the blade. Preliminary aerodynamic performance measurements are presented and close agreement is found with theory.
Resumo:
Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.