121 resultados para Focal Point
Resumo:
This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Lifetimes of excited states in 128Ce were measured using the recoil distance Doppler-shift (RDDS) and the Doppler-shift attenuation (DSAM) methods. The experiments were performed at the Wright Nuclear Structure Laboratory of Yale University. Excited states of 128Ce were populated in the 100Mo(32Si,4n) reaction at 120 MeV and the nuclear γ decay was measured with an array of eight Clover detectors positioned at forward and backward angles. The deduced yrast transition strengths together with the energies of the levels within the ground-state (gs) band of 128Ce are in agreement with the predicted values for the X(5) critical point symmetry. Thus, we suggest 128Ce as a benchmark X(5) nucleus in the mass A ≈ 130 region. © World Scientific Publishing Company.
Resumo:
This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application. © 2012 Springer Science+Business Media, LLC.
Resumo:
Single-sensor maximum power point tracking algorithms for photovoltaic systems are presented. The algorithms have the features, characteristics and advantages of the widely used incremental conductance (INC) algorithm. However; unlike the INC algorithm which requires two sensors (the voltage sensor and the current sensor), the single-sensor algorithms are more desirable because they require only one sensor: the voltage sensor. The algorithms operate by maximising power at the DC-DC converter output, instead of the input. © 2013 The Institution of Engineering and Technology.
Resumo:
Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.
Resumo:
A numerical study is presented showing the structural response and sound radiation from a range of thin shell structures excited by a point force: a baffled flat plate, a sphere, a family of spheroids and a family of closed circular cylinders. All the structures have the same material properties, thickness and total surface area so the asymptotic modal density is the same. Dramatic differences are shown in the total radiated sound power for the different shells. It was already known that the flat plate and the sphere behave very differently. These results show that the cylinders and, particularly, the spheroids show patterns that are not intermediate between the two but instead display new features: in certain frequency ranges the radiated sound power can be at least an order of magnitude greater than either the plate or the sphere. © 2013 Elsevier Ltd.
Resumo:
An easy-to-interpret kinematic quantity measuring the average corotation of material line segments near a point is introduced and applied to vortex identification. At a given point, the vector of average corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over "all planar cross sections" passing through the examined point. The vortex-identification method based on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate as well as to the inner configuration of the velocity gradient tensor. The method is derived from a well-defined interpretation of the local flow kinematics to determine the "plane of swirling" and is also applicable to compressible and variable-density flows. Practical application to direct numerical simulation datasets includes a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with some popular local methods and perform better in regions of strong shearing. Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.