117 resultados para Economic conversion


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using energy more efficiently is essential if carbon emissions are to be reduced. According to the International Energy Agency (IEA), energy efficiency improvements represent the largest and least costly savings in carbon emissions, even when compared with renewables, nuclear power and carbon capture and storage. Yet, how should future priorities be directed? Should efforts be focused on light bulbs or diesel engines, insulating houses or improving coal-fired power stations? Previous attempts to assess energy efficiency options provide a useful snapshot for directing short-term responses, but are limited to only known technologies developed under current economic conditions. Tomorrow's economic drivers are not easy to forecast, and new technical solutions often present in a disruptive manner. Fortunately, the theoretical and practical efficiency limits do not vary with time, allowing the uncertainty of economic forecasts to be avoided and the potential of yet to be discovered efficient designs to be captured. This research aims to provide a rational basis for assessing all future developments in energy efficiency. The global fow of energy through technical devices is traced from fuels to final services, and presented as an energy map to convey visually the scale of energy use. An important distinction is made between conversion devices, which upgrade energy into more useable forms, and passive systems, from which energy is lost as low temperature heat, in exchange for final services. Theoretical efficiency limits are calculated for conversion devices using exergy analysis, and show a 89% potential reduction in energy use. Efforts should be focused on improving the efficiency of, in relative order: biomass burners, refrigeration systems, gas burners and petrol engines. For passive systems, practical utilisation limits are calculated based on engineering models, and demonstrate energy savings of 73% are achievable. Significant gains are found in technical solutions that increase the thermal insulation of building fabrics and reduce the mass of vehicles. The result of this work is a consistent basis for comparing efficiency options, that can enable future technical research and energy policy to be directed towards the actions that will make the most difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conversion LWRs concepts typically rely on a heterogeneous core configuration, where fissile zones are interspersed with fertile blanket zones in order to achieve a high conversion ratio. Modeling such a heterogeneous structure of these cores represents a significant challenge to the conventional reactor analysis methods. It was recently suggested to overcome such difficulties, in particular, for the case of axially heterogeneous reduced moderation BWRs, by introducing an additional set of discontinuity factors in axial direction at the interfaces between fissile and fertile fuel assembly zones. However, none of the existing nodal diffusion core simulators have the capability of accounting for discontinuity of homogeneous nodal fluxes in axial direction since the fuel composition of conventional LWRs is much more axially uniform. In this work, we modified the nodal diffusion code DYN3D by introducing such a capability. The new version of the code was tested on a series of reduced moderation BWR cases with Th-U233 and U-Pu-MA fuel. The library of few-group homogenized cross sections and the data required for the calculation of discontinuity factors were generated using the Monte Carlo transport code Serpent. The results obtained with the modified version of DYN3D were compared with the reference Monte Carlo solutions and were found to be in good agreement. The current analysis demonstrates that high conversion LWRs can in principle be modeled using existing nodal diffusion core simulators. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon emissions from a country perspective, tracking the rise of China and other developing countries. The results show not only a rise in the economic fortunes of the newly industrializing nations, but also a significant rise in global pollution, particularly air pollution and CO2 emissions largely from coal use, which alter and even reverse previous global trends. In the second part, we change perspective and quantitatively evaluate two important technical strategies to reduce pollution and carbon emissions: energy efficiency and materials recycling. We subdivide the manufacturing sector on the basis of the five major subsectors that dominate energy use and carbon emissions: (a) iron and steel, (b) cement, (c) plastics, (d) paper, and (e) aluminum. The analysis identifies technical constraints on these strategies, but by combined and aggressive action, industry should be able to balance increases in demand with these technical improvements. The result would be high but relatively flat energy use and carbon emissions. The review closes by demonstrating the consequences of extrapolating trends in production and carbon emissions and suggesting two options for further environmental improvements, materials efficiency, and demand reduction. © 2013 by Annual Reviews. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 80 GSPS photonic ADC system is demonstrated, using broadband MLL and dispersive fibre to form a continuous waveform with time-wavelength mapping, and AWG to channelise. Tests are carried out for RF signals up to 10GHz. © 2005 Optical Society of America.