110 resultados para Discrete symmetries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to technological limitations, robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of behaviors is necessary for autonomous robots in uncertain complex environments. In an effort to increase the versatility of actuators, we introduce a new concept of multimodal actuation (MMA) that employs dynamic coupling in the form of clutches and brakes to change its mode of operation. The dynamic coupling allows motors and passive elements such as springs to be engaged and disengaged within a single actuator. We apply the concept to a linear series elastic actuator which uses friction brakes controlled online for the dynamic coupling. With this prototype, we are able to demonstrate several modes of operation including stiff position control, series elastic actuation as well as the possibility to store and release energy in a controlled manner for explosive tasks such as jumping. In this paper, we model the proposed concept of actuation and show a systematic performance analysis of the physical prototype that we developed in our laboratory. © 1996-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to technological limitations robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of output and behaviours is necessary for robots to operate autonomously in uncertain complex environments. We present a design framework that employs dynamic couplings in the form of brakes and clutches to increase the performance and diversity of linear actuators. The couplings are used to switch between a diverse range of discrete modes of operation within a single actuator. We also provide a design solution for miniaturized couplings that use dry friction to produce rapid switching and high braking forces. The couplings are designed so that once engaged or disengaged no extra energy is consumed. We apply the design framework and coupling design to a linear series elastic actuator (SEA) and show that this relatively simple implementation increases the performance and adds new behaviours to the standard design. Through a number of performance tests we are able to show rapid switching between a high and a low impedance output mode; that the actuator's spring can be charged to produce short bursts of high output power; and that the actuator has additional passive and rigid modes that consume no power once activated. Robots using actuators from this design framework would see a vast increase in their behavioural diversity and improvements in their performance not yet possible with conventional actuator design. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.