138 resultados para Continuous exercise
Resumo:
Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.
Resumo:
This paper reports our experiences with a phoneme recognition system for the TIMIT database which uses multiple mixture continuous density monophone HMMs trained using MMI. A comprehensive set of results are presented comparing the ML and MMI training criteria for both diagonal and full covariance models. These results using simple monophone HMMs show clear performance gains achieved by MMI training, and are comparable to the best reported by others including those which use context-dependent models. In addition, the paper discusses a number of performance and implementation issues which are crucial to successful MMI training.
Resumo:
Most HMM-based TTS systems use a hard voiced/unvoiced classification to produce a discontinuous F0 signal which is used for the generation of the source-excitation. When a mixed source excitation is used, this decision can be based on two different sources of information: the state-specific MSD-prior of the F0 models, and/or the frame-specific features generated by the aperiodicity model. This paper examines the meaning of these variables in the synthesis process, their interaction, and how they affect the perceived quality of the generated speech The results of several perceptual experiments show that when using mixed excitation, subjects consistently prefer samples with very few or no false unvoiced errors, whereas a reduction in the rate of false voiced errors does not produce any perceptual improvement. This suggests that rather than using any form of hard voiced/unvoiced classification, e.g., the MSD-prior, it is better for synthesis to use a continuous F0 signal and rely on the frame-level soft voiced/unvoiced decision of the aperiodicity model. © 2011 IEEE.
Resumo:
Fundamental frequency, or F0 is critical for high quality speech synthesis in HMM based speech synthesis. Traditionally, F0 values are considered to depend on a binary voicing decision such that they are continuous in voiced regions and undefined in unvoiced regions. Multi-space distribution HMM (MSDHMM) has been used for modelling the discontinuous F0. Recently, a continuous F0 modelling framework has been proposed and shown to be effective, where continuous F0 observations are assumed to always exist and voicing labels are explicitly modelled by an independent stream. In this paper, a refined continuous F0 modelling approach is proposed. Here, F0 values are assumed to be dependent on voicing labels and both are jointly modelled in a single stream. Due to the enforced dependency, the new method can effectively reduce the voicing classification error. Subjective listening tests also demonstrate that the new approach can yield significant improvements on the naturalness of the synthesised speech. A dynamic random unvoiced F0 generation method is also investigated. Experiments show that it has significant effect on the quality of synthesised speech. © 2011 IEEE.
Resumo:
Recently there has been interest in structured discriminative models for speech recognition. In these models sentence posteriors are directly modelled, given a set of features extracted from the observation sequence, and hypothesised word sequence. In previous work these discriminative models have been combined with features derived from generative models for noise-robust speech recognition for continuous digits. This paper extends this work to medium to large vocabulary tasks. The form of the score-space extracted using the generative models, and parameter tying of the discriminative model, are both discussed. Update formulae for both conditional maximum likelihood and minimum Bayes' risk training are described. Experimental results are presented on small and medium to large vocabulary noise-corrupted speech recognition tasks: AURORA 2 and 4. © 2011 IEEE.
Resumo:
Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.
Resumo:
A control algorithm is presented that addresses the stability issues inherent to the operation of monolithic mode-locked laser diodes. It enables a continuous pulse duration tuning without any onset of Q-switching instabilities. A demonstration of the algorithm performance is presented for two radically different laser diode geometries and continuous pulse duration tuning between 0.5 ps to 2.2 ps and 1.2 ps to 10.2 ps is achieved. With practical applications in mind, this algorithm also facilitates control over performance parameters such as output power and wavelength during pulse duration tuning. The developed algorithm enables the user to harness the operational flexibility from such a laser with 'push-button' simplicity.