129 resultados para Complementary metal–oxide–semiconductor (CMOS)
Resumo:
We demonstrate the growth of multi wall and single wall carbon nanotubes (CNT) onto substrates containing commercial 1-m CMOS integrated circuits. The low substrate temperature growth (450°C) was achieved by using hot filament (1000 °C) to preheat the source gases (C 2H 2 and NH 3) and in situ mass spe-ctroscopy was used to identify the gas species present. Field effect transistors based on Single Walled Carbon Nanotube (SWNT) grown under such conditions were fabricated and examined. CNT growth was performed directly on the passivation layer of the CMOS integrated circuits. Individual n- and p-type CMOS transistors were compared before and after CNT growth. The transistors survive and operate after the CNT growth process, although small degradations are observed in the output current (for p-transistors) and leakage current (for both p- and n-type transistors). © 2010 IEEE.
Resumo:
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.
Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope
Resumo:
This paper introduces a novel method for the training of a complementary acoustic model with respect to set of given acoustic models. The method is based upon an extension of the Minimum Phone Error (MPE) criterion and aims at producing a model that makes complementary phone errors to those already trained. The technique is therefore called Complementary Phone Error (CPE) training. The method is evaluated using an Arabic large vocabulary continuous speech recognition task. Reductions in word error rate (WER) after combination with a CPE-trained system were obtained with up to 0.7% absolute for a system trained on 172 hours of acoustic data and up to 0.2% absolute for the final system trained on nearly 2000 hours of Arabic data.
Resumo:
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
There is considerable demand for sensors that are capable of detecting ultra-low concentrations (sub-PPM) of toxic gases in air. Of particular interest are NO2 and CO that are exhaust products of internal combustion engines. Electrochemical (EC) sensors are widely used to detect these gases and offer the advantages of low power, good selectivity and temporal stability. However, EC sensors are large (1 cm3), hand-made and thus expensive ($25). Consequently, they are unsuitable for the low-cost automotive market that demands units for less than $10. One alternative technology is SnO2 or WO3 resistive gas sensors that are fabricated in volume today using screen-printed films on alumina substrates and operate at 400°C. Unfortunately, they suffer from several disadvantages: power consumption is high 200 mW; reproducibility of the sensing element is poor; and cross-sensitivity is high. © 2013 IEEE.
Resumo:
The design, 3D FEM modelling and measurement results of a novel high temperature, low power SOI CMOS MEMS thermal conductivity gas sensor are presented here. The sensor consists of a circular membrane with an embedded tungsten micro-heater. The high sensing capability is based on the temperature sensitivity of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm 2. The circular membrane has a 600 μm diameter while the heating element has a 320 μm diameter. Measurement results show that for a constant power consumption of 75 mW the heater temperature was 562.4°C in air, 565.9°C in N2, 592.5°C for 1 % H2 in Ar and 599.5°C in Ar. © 2013 IEEE.
Resumo:
Non-dispersive-infra-red (NDIR) sensors are believed to be one of the most selective and robust solutions for CO2 detection, though cost prohibits their broader integration. In this paper we propose a commercially viable silicon-on-insulator (SOI) complementary metal-oxide (CMOS) micro-electro-mechanical (MEMS) technology for an IR thermal emitter. For the first time, vertically aligned multi walled carbon nanotubes (VA-MWCNTs) are suggested as a possible coating for the enhancement of the emission intensity of the optical source of a NDIR system. VA-MWCNTs have been grown in situ by chemical vapour deposition (CVD) exclusively on the heater area. Optical microscopy, scanning electron microscopy and Raman spectroscopy have been used to verify the quality of the VA-MWCNTs growth. The CNT-coated emitter demonstrated an increased response to CO2 of approx. 60%. Furthermore, we show that the VA-MWCNTs are stable up to temperatures of 500°C for up to 100 hours. © 2013 IEEE.
Resumo:
Design, FEM modelling and characterization of a novel dual mode thermal conductivity and infrared absorption sensor using SOI CMOS technology is reported. The dual mode sensing capability is based on the temperature sensitivity and wideband infrared radiation emission of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm2. Infrared detectors usually use thermopiles in addition to a separate IR source. A single highly responsive dual mode source and sensing element targeting not only low molecular mass gases but also greenhouse gases, while consuming 40 mW power at 700°C in synthetic air, thus makes this sensor particularly viable for battery powered handheld devices. © 2013 IEEE.