127 resultados para Cardiorespiratory interactions
Resumo:
BIPV(Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The effect of BIPV on urban microclimate can be summarized under the following four aspects. The change of absorptivity and emissivity from original building surface to PV will change urban radiation balance. After installation of PV, building cooling load will be reduced because of PV shading effect, so urban anthropogenic heat also decreases to some extent. Because PV can reduce carbon dioxide emissions which is one of the reasons for urban heat island, BIPV is useful to mitigate this phenomena. The anthropogenic heat will alter after using BIPV, because partial replacement of fossil fuel means to change sensible heat from fossil fuel to solar energy. Different urban microclimate may have various effects on BIPV performance that can be analyzed from two perspectives. Firstly, BIPV performance may decline with the increase of air temperature in densely built areas because many factors in urban areas cause higher temperature than that of the surrounding countryside. Secondly, the change of solar irradiance at the ground level under urban air pollution will lead to the variation of BIPV performance because total solar irradiance usually is reduced and each solar cell has a different spectral response characteristic. The thermal model and performance model of ventilated BIPV according to actual meteorologic data in Tianjin(China) are combined to predict PV temperature and power output in the city of Tianjin. Then, using dynamic building energy model, cooling load is calculated after BIPV installation. The calculation made based in Tianjin shows that it is necessary to pay attention to and further analyze interaction between them to decrease urban pollution, improve BIPV Performance and reduce colling load. Copyright © 2005 by ASME.
Resumo:
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. Copyright © 2012 by Daniella E. Raveh and Michael Iovnovich.
Resumo:
Construction industry is a sector that is renowned for the slow uptake of new technologies. This is usually due to the conservative nature of this sector that relies heavily on tried and tested and successful old business practices. However, there is an eagerness in this industry to adopt Building Information Modelling (BIM) technologies to capture and record accurate information about a building project. But vast amounts of information and knowledge about the construction process is typically hidden within informal social interactions that take place in the work environment. In this paper we present a vision where smartphones and tablet devices carried by construction workers are used to capture the interaction and communication between workers in the field. Informal chats about decisions taken in the field, impromptu formation of teams, identification of key persons for certain tasks, and tracking the flow of information across the project community, are some pieces of information that could be captured by employing social sensing in the field. This information can not only be used during the construction to improve the site processes but it can also be exploited by the end user during maintenance of the building. We highlight the challenges that need to be overcome for this mobile and social sensing system to become a reality. © 2012 ACM.
Resumo:
Experiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Machnumber M∞ = 1.5 normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the -region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave. © Copyright 2012 Cambridge University Press.
Resumo:
Multiple flame-flame interactions in premixed combustion are investigated using direct numerical simulations of twin turbulent V-flames for a range of turbulence intensities and length scales. Interactions are identified using a novel automatic feature extraction (AFE) technique, based on data registration using the dual-tree complex wavelet transform. Information on the time, position, and type of interactions, and their influence on the flame area is extracted using AFE. Characteristic length and time scales for the interactions are identified. The effect of interactions on the flame brush is quantified through a global stretch rate, defined as the sum of flamelet stretch and interaction stretch contributions. The effects of each interaction type are discussed. It is found that the magnitude of the fluctuations in flamelet and interaction stretch are comparable, and a qualitative sensitivity to turbulence length scale is found for one interaction type. Implications for modeling are discussed. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Experiments have been conducted to examine the mechanisms behind the coupling between corner separation and centreline separation when holding a normal shock in a rectangular channel. The study has focused on a M ∞ = 1.5 normal shock held in a wind tunnel with a parallel rectangular cross-section. The primary mechanism explaining the link between the corner separation size and the centreline separation appears to be the generation of compression waves which act to smear the adverse pressure gradient imposed upon other parts of the flow. In addition, the origin of the λ-foot leading leg appears to be depended upon the size of the corner separations. Experimental results indicate that the alteration of the λ-region, which occurs in the supersonic portion of the SBLI, is more important than the generation of any blockage in the subsonic region downstream of the shock wave. Copyright © 2012 by H. Babinsky, D.M.F. Burton.
Resumo:
Within strategic technology management and innovation, often stakeholders extrapolate past industry dynamics, trends and patterns into the future. One frequently used concept is that of 'lifecycles' - an analogy of a sequence of stages encountered by living organisms. Lifecycle terms - such as technology, product, industry - are frequently used interchangeably and without clear definition. Within the interdisciplinary context of technology management and forecasting, this juxtaposition of dynamics can create confusion rather than simplification. This paper explores some of the dynamics typically associated with technology-based industries, illustrated with data from the early US automotive industry. A wide range of dimensions are seen to have potential to influence the path of industry development, and technology roadmapping architecture is used to present a simplified visualisation of some of these. Stakeholders need to consider the units of analysis, causality and synchronicity of relevant different dynamics, rather than isolated lifecycles. Some graphical curves represent simple aggregation of components; other dynamics have significant impact, but incur time lags, rather than being superimposed. To optimise alignment of the important dimensions within any technology development, and for future strategy decisions, understanding these interactions is critical. © 2012 Elsevier Inc.
Resumo:
The influence of Lewis number on turbulent premixed flame interactions is investigated using automatic feature extraction (AFE) applied to high-resolution flame simulation data. Premixed turbulent twin V-flames under identical turbulence conditions are simulated at global Lewis numbers of 0.4, 0.8, 1.0, and 1.2. Information on the position, frequency, and magnitude of the interactions is compared, and the sensitivity of the results to sample interval is discussed. It is found that both the frequency and magnitude of normal type interactions increases with decreasing Lewis number. Counternormal type interactions become more likely as the Lewis number increases. The variation in both the frequency and the magnitude of the interactions is found to be caused by large-scale changes in flame wrinkling resulting from differences in the thermo-diffusive stability of the flames. During flame interactions, thermo-diffusive effects are found to be insignificant due to the separation of time scales. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
A separated oblique shock reflection on the floor of a rectangular cross-section wind tunnel has been investigated at M=2.5. The study aims to determine if and how separations occurring in the corners influence the main interaction as observed around the centreline of the floor. By changing the size of the corner separations through localised suction and small corner obstructions it was shown that the shape of the separated region in the centre was altered considerably. The separation length along the floor centreline was also modified by changes to the corner separation. A simple physical model has been proposed to explain the coupling between these separated regions based on the existence of compression or shock waves caused by the displacement effect of corner separation. These corner shocks alter the adverse pressure gradient imposed on the boundary-layer elsewhere which can lead to local reductions or increases of separation length. It is suggested that a typical oblique shock wave/boundary-layer interaction in rectangular channels features several zones depending on the relative position of the corner shocks and the main incident shock wave. Based on these findings the dependence of centre-line separation length on effective wind tunnel width is hypothesised. This requires further verification through experiments or computation. © 2013 by H. Babinsky.
Resumo:
The design of accessible and inclusive contexts: work and daily living environments 6. Business advantages and applications of inclusive design 7. Legislation, standards and government awareness of inclusive design
Resumo:
Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.