109 resultados para Botta, Carlo, 1766-1837.
Resumo:
This paper presents stochastic implicit coupling method intended for use in Monte-Carlo (MC) based reactor analysis systems that include burnup and thermal hydraulic (TH) feedbacks. Both feedbacks are essential for accurate modeling of advanced reactor designs and analyses of associated fuel cycles. In particular, we investigate the effect of different burnup-TH coupling schemes on the numerical stability and accuracy of coupled MC calculations. First, we present the beginning of time step method which is the most commonly used. The accuracy of this method depends on the time step length and it is only conditionally stable. This work demonstrates that even for relatively short time steps, this method can be numerically unstable. Namely, the spatial distribution of neutronic and thermal hydraulic parameters, such as nuclide densities and temperatures, exhibit oscillatory behavior. To address the numerical stability issue, new implicit stochastic methods are proposed. The methods solve the depletion and TH problems simultaneously and use under-relaxation to speed up convergence. These methods are numerically stable and accurate even for relatively large time steps and require less computation time than the existing methods. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the Serpent Monte Carlo code was used as a tool for preparation of homogenized few-group cross sections for the nodal diffusion analysis of Sodium cooled Fast Reactor (SFR) cores. Few-group constants for two reference SFR cores were generated by Serpent and then employed by nodal diffusion code DYN3D in 2D full core calculations. The DYN3D results were verified against the references full core Serpent Monte Carlo solutions. A good agreement between the reference Monte Carlo and nodal diffusion results was observed demonstrating the feasibility of using Serpent for generation of few-group constants for the deterministic SFR analysis.
Resumo:
This paper reports on the use of a parallelised Model Predictive Control, Sequential Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic management specifically around the terminal manoeuvring area of an airport. The target problem is nonlinear, highly constrained, non-convex and uses a single decision-maker with multiple aircraft. The implementation includes a spatio-temporal wind model and rolling window simulations for realistic ongoing scenarios. The method is capable of handling arriving and departing aircraft simultaneously including some with very low fuel remaining. A novel flow field is proposed to smooth the approach trajectories for arriving aircraft and all trajectories are planned in three dimensions. Massive parallelisation of the algorithm allows solution speeds to approach those required for real-time use.
Resumo:
Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations. © 2014 Elsevier Ltd. All rights reserved.