121 resultados para All-optical packet routing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated an ultra-compact 4×4 optical matrix on InP/InGaAsP material. 1×4 MMI couplers and TIR mirrors are employed to produce a compact 1×2 mm2 device. A CH4/H2/O2 RIE dry etch process has been used to realize two-level dry etching: deep-etch for both the MMI couplers and the mirrors and shallow-etch for the rest of the routing waveguides. It was found that a metal/dielectric bilayer mask is essential for multi-dry-etch processes and high profile verticality. We have found a Ti intermediate mask for the deep-etch process which is removable by SF6 dry-etch before the following shallow process. Dry-etch removal of the intermediate mask is necessary to protect the deep-etched mirror sidewall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the effect of introducing nitrogen into different carbon networks. Two kinds of carbon nitride films were deposited: (a) Using a DC-magnetron sputtering system sp2 bonded carbon nitride (a-CN) films were deposited and (b) Using a combination of filtered cathodic vacuum arc and a low-pressure N2 plasma source, N was introduced into sp3 carbon networks (ta-C), leading to the formation of a more dense CN film named ta-CN. For ta-CN films we found that the optical gap initially decreases as the N content and the sp2 fraction rises, but above a certain N quantity there is a level-off of the value, and the gap then remains constant despite further increases in the fraction and clustering of the sp2 phase. However, for a-CN films the optical gap increases with the nitrogen content. These two different trends are not easily explained using the same framework as that for carbon films, in which any decrease in the band gap is associated to an increase in the sp2 fraction or its clustering. Here we discuss the conditions that lead to high optical gap in sp2-bonded carbon nitride samples, which are clearly not associated to the presence of any crystalline super-hard phase. We also compared other differences in properties observed between the two films, such as deposition rate, infrared and Raman spectra. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model-based optical motion capture systems require knowledge of the position of the markers relative to the underlying skeleton, the lengths of the skeleton's limbs, and which limb each marker is attached to. These model parameters are typically assumed and entered into the system manually, although techniques exist for calculating some of them, such as the position of the markers relative to the skeleton's joints. We present a fully automatic procedure for determining these model parameters. It tracks the 2D positions of the markers on the cameras' image planes and determines which markers lie on each limb before calculating the position of the underlying skeleton. The only assumption is that the skeleton consists of rigid limbs connected with ball joints. The proposed system is demonstrated on a number of real data examples and is shown to calculate good estimates of the model parameters in each. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

End-to-end real-time experimental demonstrations are reported, for the first time, of aggregated 11.25Gb/s over 26.4km standard SMF, optical orthogonal frequency division multiple access (OOFDMA) PONs with adaptive dynamic bandwidth allocation (DBA). The demonstrated intensity-modulation and direct-detection (IMDD) OOFDMA PON system consists of two optical network units (ONUs), each of which employs a DFB-based directly modulated laser (DML) or a VCSEL-based DML for modulating upstream signals. Extensive experimental explorations of dynamic OOFDMA PON system properties are undertaken utilizing identified optimum DML operating conditions. It is shown that, for simultaneously achieving acceptable BERs for all upstream signals, the OOFDMA PON system has a >3dB dynamic ONU launch power variation range, and the BER performance of the system is insusceptible to any upstream symbol offsets slightly smaller than the adopted cyclic prefix. In addition, experimental results also indicate that, in addition to maximizing the aggregated system transmission capacity, adaptive DBA can also effectively reduce imperfections in transmission channel properties without affecting signal bit rates offered to individual ONUs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel technological platform for multiple gas detection based on the use of PCB-integrated polymer waveguides is presented. A proof-of-principle ammonia sensor is reported integrating onto low-cost FR4 substrates all essential photonic, electronic and chemical components. The device's potential to detect multiple gases is demonstrated. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of ultrashort pulses in a traveling wave semiconductor amplifier is considered. It is demonstrated that the effective polarization relaxation time, which determines the coherence of the interaction of pulses within the medium, strongly depends on its optical gain. As a result, it is shown that at large optical gains the coherence time can exceed the transverse relaxation time T2 by an order of magnitude, this accounting for the strong femtosecond superradiant pulse generation commonly observed in semiconductor laser structures. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical investigations have been carried out to analyze and compare the link power budget and power dissipation of non-return-to-zero (NRZ), pulse amplitude modulation-4 (PAM-4), carrierless amplitude and phase modulation-16 (CAP-16) and 16-quadrature amplitude modulation-orthogonal frequency division multiplexing (16-QAM-OFDM) systems for data center interconnect scenarios. It is shown that for multimode fiber (MMF) links, NRZ modulation schemes with electronic equalization offer the best link power budget margins with the least power dissipation for short transmission distances up to 200 m; while OOFDM is the only scheme which can support a distance of 300 m albeit with power dissipation as high as 4 times that of NRZ. For short single mode fiber (SMF) links, all the modulation schemes offer similar link power budget margins for fiber lengths up to 15 km, but NRZ and PAM-4 are preferable due to their system simplicity and low power consumption. For lengths of up to 30 km, CAP-16 and OOFDM are required although the schemes consume 2 and 4 times as much power respectively compared to that of NRZ. OOFDM alone allows link operation up to 35 km distances. © 1983-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300-1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enhance the electrically driven emission in a device via Purcell effect. A narrow (Δλ=0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis. © 1983-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multimode polymer waveguides are promising for use in board-level optical interconnects. In recent years, various on-board optical interconnection architectures have been demonstrated making use of passive routing waveguide components. In particular, 90° bends have played important roles in complex waveguide layouts enabling interconnection between non co-linear points on a board. Due to the dimensions and index step of the waveguides typically used in on-board optical interconnects, low-loss bends are typically limited to a radius of ∼ 10 mm. This paper therefore presents the design and fabrication of compact low-loss waveguide bends with reduced radii of curvature, offering significant reductions in the required areas for on-board optical circuits. The proposed design relies on the exposure of the bend section to the air, achieving tighter light confinement along the bend and reduced bending losses. Simulation studies carried out with ray tracing tools and experimental results from polymer samples fabricated on FR4 are presented. Low bending losses are achieved from the air-exposed bends up to 4 mm of radius of curvature, while an improvement of 14 μm in the 1 dB alignment tolerances at the input of these devices (fibre to waveguide coupling) is also obtained. Finally, the air-exposed bends are employed in an optical bus structure, offering reductions in insertion loss of up to 3.8 dB. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light-matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate-nanoscale-range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical pump-terahertz probe spectroscopy was used to study the key electronic properties of GaAs, InAs and InP nanowires at room temperature. Of all nanowires studied, InAs nanowires exhibited the highest mobilities of 6000 cm2V-1s-1. InP nanowires featured the longest photoconductivity lifetimes and an exceptionally low surface recombination velocity of 170 cm/s. © 2013 IEEE.