122 resultados para Agency cost
Resumo:
Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.
Resumo:
A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.
Resumo:
Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world.
Resumo:
The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.
Resumo:
In recent literature, ℓ1-regularised MPC, or ℓasso-MPC, has been recommended for control tasks involving complex requirements on the control signals, for instance, the simultaneous solution of regulation and sharp control allocation for redundantly-actuated systems. This is due to the implicit thresholding ability of LASSO regression. In this paper, a stabilising terminal cost featuring a mixed ℓ1/ℓ2 2 penalty is presented. Then, a candidate terminal controller is computed, with the aim of enlarging the region of attraction. © 2013 EUCA.
Resumo:
An optical waveguide sensor formed directly on low-cost PCB substrates is presented for the first time. The device integrates polymer waveguides functionalized with chemical dyes, photonic and electronic components and allows multiple-gas detection. © OSA/CLEO 2011.
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for nextgeneration datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © OSA/OFC/NFOEC 2011.
Resumo:
A code-label recognition time of less than 500ps is demonstrated using low-cost FIRfilters. The electronically-processed label provides a control signal from an auto-correlated label. Error-free electronic code-label switching of an optical 10Gb/s signal is demonstrated. © 2010 Optical Society of America.
Resumo:
Carrierless amplitude and phase modulation for next-generation datacommunication links is considered for the first time. Low-cost implementation of a high-spectral-efficiency 10 Gb/s channel is demonstrated as a route to links at 40 Gb/s and beyond. © 2010 Optical Society of America.
Resumo:
This paper describes electronically processed CDMA techniques which allow Gb/s data rates for each user in passive optical networks. We will present recent progress including a 16 chip Walsh-code system operating at 18 Gchip/s supporting up to 16 users. © 2009 IEEE.
Resumo:
This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd.