113 resultados para Acide rétinoïque all-trans
Resumo:
A novel corrugated composite core, referred to as a hierarchical corrugation, has been developed and tested experimentally. Hierarchical corrugations exhibit a range of different failure modes depending on the geometrical properties and the material properties of the structures. In order to understand the different failure modes the analytical strength model, developed in part 1 of this paper, was used to make collapse mechanism maps for the different corrugation configurations. If designed correctly, the hierarchical structures can have more than 7 times higher weight specific strength compared to its monolithic counter part. The difference in strength arises mainly from the increase in buckling resistance of the sandwich core members compared to the monolithic version. The highest difference in strength is seen for core configurations with low overall density. As the density of the core increases, the monolithic core members get stockier and more resistant to buckling and thus the benefits of the hierarchical structure reduces. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
An analytical model for the compressive and shear response of monolithic and hierarchical corrugated composite cores has been developed. The stiffness model considers the contribution in stiffness from the bending- and the shear deformations of the core members in addition to the stretching deformation. The strength model is based on the normal stress and shear stress distribution over each core member when subjected to a shear or compressive load condition. The strength model also accounts for initial imperfections. In part 1 of this series, the analytical model is described and the results are compared to finite element predictions. In part 2, the analytical model is compared to experimental results and the behaviour of the corrugated structures is investigated more thoroughly using failure mechanism maps. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
A SPICE simulation model of a novel cascode switch that combines a high voltage normally-on silicon carbide (SiC) junction field effect transistor (JFET) with a low voltage enhancement-mode gallium nitride field effect transistor (eGaN FET) has been developed, with the aim of optimising cascode switching performance. The effect of gate resistance on stability and switching losses is investigated and optimum values chosen. The effects of stray inductance on cascode switching performance are considered and the benefits of low inductance packaging discussed. The use of a positive JFET gate bias in a cascode switch is shown to reduce switching losses as well as reducing on-state losses. The findings of the simulation are used to produce a list of priorities for the design and layout of wide-bandgap cascode switches, relevant to both SiC and GaN high voltage devices. © 2013 IEEE.
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.
Resumo:
We experimentally demonstrate femtosecond switching of a fully packaged hybrid-integrated Mach-Zehnder switch. A record switching window of 620fs at full-width-half-maximum is achieved. © 2004 Optical Society of America.
Resumo:
We experimentally show that a hybrid-integrated Mach-Zehnder switch with a high performance gate profile allows retiming of optical signals with an accuracy of 500-700fs even if the input timing jitter is increased to 3ps. © 2004 Optical Society of America.
Resumo:
Single-wall carbon nanotubes (SWNTs) and graphene have emerged as promising saturable absorbers (SAs), due to their broad operation bandwidth and fast recovery times [1-3]. However, Yb-doped fiber lasers mode-locked using CNT and graphene SAs have generated relatively long pulses. All-fiber cavity designs are highly favored for their environmental robustness. Here, we demonstrate an all-fiber Yb-doped laser based on a SWNT saturable absorber, which allows generation of 8.7 ps-long pulses, externally compressed to 118 fs. To the best of our knowledge, these are the shortest pulses obtained with SWNT SAs from a Yb-doped fiber laser. © 2013 IEEE.