129 resultados para 1995_12080748 Optics-10


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation on how high quality single-mode operation can be readily attained on etching circles in multimode devices is discussed. Arrays of such spots can also be envisaged. Control of the polarization state is also achieved by use of deep line etches. The output filaments and beam shapes of the conventional multimode vertical cavity surface emitting lasers (VCSEL) is shown to be engineered in terms of their positions, widths, and polarizations by use of focused ion beam etching (FIBE). Several GaAs quantum well top-emitting devices with cavity diameters of 10 μm and 18 μm were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the relative performance of an integrated semiconductor optical amplifier (SOA)/distributed feedback laser wavelength converter that can operate with negative penalties at 10 Gb/s rates is conducted. It is found that reduction of more than 25 times in required input powers are achieved when compared with laser or SOA converters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the high-quality nonlinear pulse compression of gain-switched laser diode pulses using a two-cascade compression scheme are presented. The scheme incorporates a dispersive delay line and a nonlinear pulse compressor based on a dispersion-imbalanced fiber loop mirror (DILM). It is demonstrated that the DILM can be also used for the pulse compression with a compression ratio of 10 or higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fabry-Perot laser source operating at 1300 nm was modulated at 2.5 Gb/s with a 27-1 pseudo-random bit sequence. Three techniques were examined for increasing the bandwidth of optical links using multimode fiber (MMF). With an offset launch of 14 μm, the eye remained open after the 2 km link of 50 μm core MMF containing seven connectors and three splices. An approximate four-fold bandwidth improvement was obtained using the offset launch with a bandwidth-length product of 7.5 Gb/s.km and a bit error rate below 10-10. The bandwidth enhancement was stable against environmental influences on the fiber link, such as mechanical agitation. Detailed simulations demonstrated that the technique allows enhanced operating bandwidths in over 99% of existing link.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel compact integrated nonlinear optical switch is demonstrated. Using a high-power picosecond pulse of 5-ps pulsewidth and 250-MHz repetition rate, all-optical switching with a contrast ratio of 23 dB has been achieved using an in-fiber input power < 14 dBm (100 pJ/pulse). The switch speed depends on the carrier sweep-out time, which can be reduced to the 10 ps range by either applying a reverse bias or by introduction of carrier recombination centers in the active layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the exchange coupling theory was proposed by Kneller and Hawig in 1991 there has been a significant effort within the magnetic materials community to enhance the performance of rare earth magnets by utilising nano-composite meta-materials. Inclusions of magnetically soft iron smaller than approximately 10 nm in diameter are exchange coupled to a surrounding magnetically hard Nd2Fe14B matrix and provide an enhanced saturisation magnetisation without reducing coercivity. For such a fine nanostructure to be produced, close control over the thermal history of the material is needed. A processing route which provides this is laser annealing from an amorphous alloy precursor. In the current work, relationships between laser parameters, thermal histories of laser processed amorphous stoichiometric NdFeB ribbons and the magnetic properties of the resulting nanocrystalline products have been determined with a view to applying the process to thick film nanocomposite magnet production.