119 resultados para zinc function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the successful low-temperature growth of zinc oxide nanowires (ZnONWs) on silicon-on-insulator (SOI) CMOS micro-hotplates and their response, at different operating temperatures, to hydrogen in air. The SOI micro-hotplates were fabricated in a commercial CMOS foundry followed by a deep reactive ion etch (DRIE) in a MEMS foundry to form ultra-low power membranes. The micro-hotplates comprise p+ silicon micro-heaters and interdigitated metal electrodes (measuring the change in resistance of the gas sensitive nanomaterial). The ZnONWs were grown as a post-CMOS process onto the hotplates using a CMOS friendly hydrothermal method. The ZnONWs showed a good response to 500 to 5000 ppm of hydrogen in air. We believe that the integration of ZnONWs with a MEMS platform results in a low power, low cost, hydrogen sensor that would be suitable for handheld battery-operated gas sensors. © 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the problem of deriving F0 from distanttalking speech signals acquired by a microphone network. The method here proposed exploits the redundancy across the channels by jointly processing the different signals. To this purpose, a multi-microphone periodicity function is derived from the magnitude spectrum of all the channels. This function allows to estimate F0 reliably, even under reverberant conditions, without the need of any post-processing or smoothing technique. Experiments, conducted on real data, showed that the proposed frequency-domain algorithm is more suitable than other time-domain based ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO films have been deposited at room temperature with high rates (∼50 nm·min -1) using an innovative remote plasma sputtering configuration, which allows independent control of the plasma density and the sputtering ion energy. The ZnO films deposited possess excellent crystallographic orientation, high resistivity (>10 9 Ω·m), and exhibit very low surface roughness. The ability to increase the sputtering ion energy without causing unwanted Ar + bombardment onto the substrate has been shown to be crucial for the growth of films with excellent c-axis orientation without the need of substrate heating. In addition, the elimination of the Ar + bombardment has facilitated the growth of films with very low defect density and hence very low intrinsic stress (100 MPa for 3 μm-thick films). This is over an order of magnitude lower than films grown with a standard magnetron sputtering system. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions has been developed. Different types of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied power for heat generation and ZnO nanostructure synthesis is investigated by local heating experiments under ambient conditions. Based on the developed heating approach, synthesis area, location, and morphologies of ZnO nanostructures can be controlled through the deposited thickness of Zn layer and applied heating voltages. Furthermore, a connected multiple-structure (Zn-ZnO-Zn) layer is synthesized using combinative multimicroheaters. © 2002-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress in material science has proved that high-temperature superconductors, such as bulk melt-processed yttrium barium copper oxide (YBCO) single domains, have a great potential to trap significant magnetic fields. In this paper, we will describe a novel method of YBCO magnetization that only requires the applied field to be at the level of a permanent magnet. Instead of applying a pulsed high magnetic field on the YBCO, a thermally actuated material (TAM), such as Mg0.15}hbox{Cu}0.15} hbox{Zn0.7 Ti0.04}Fe1.96boxO4, has been used as an intermedium to create a travelling magnetic field by changing the local temperature so that the local permeability is changed to build up the magnetization of the YBCO gradually after multiple pumping cycles. It is well known that the relative permeability of ferrite is a function of temperature and its electromagnetic properties can be greatly changed by adding dopants such as Mg or Ti; therefore, it is considered to be the most promising TAM for future flux pumping technology. Ferrite samples were fabricated by means of the conventional ceramic method with different dopants. Zinc and iron oxides were used as raw materials. The samples were sintered at 1100 C, 1200 C} , and 1300 C. The relative permeability of the samples was measured at temperatures ranging from 77 to 300 K. This work investigates the variation of the magnetic properties of ferrites with different heat treatments and doping elements and gives a smart insight into finding better ferrites suitable for flux pumping technology. © 2002-2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concepts of function are central to design but statements about a device's functions can be interpreted in different ways. This raises problems for researchers trying to clarify the foundations of design theory and for those developing design support-tools that can represent and reason about function. By showing how functions relate systems to their sub-systems and super-systems, this article illustrates some limitations of existing function terminology and some problems with existing function statements. To address these issues, a system-relative function terminology is introduced. This is used to demonstrate that systems function not only with respect to their most local super-system, but also with respect to their more global super-systems. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networks of controlled dynamical systems exhibit a variety of interconnection patterns that could be interpreted as the structure of the system. One such interpretation of system structure is a system's signal structure, characterized as the open-loop causal dependencies among manifest variables and represented by its dynamical structure function. Although this notion of structure is among the weakest available, previous work has shown that if no a priori structural information is known about the system, not even the Boolean structure of the dynamical structure function is identifiable. Consequently, one method previously suggested for obtaining the necessary a priori structural information is to leverage knowledge about target specificity of the controlled inputs. This work extends these results to demonstrate precisely the a priori structural information that is both necessary and sufficient to reconstruct the network from input-output data. This extension is important because it significantly broadens the applicability of the identifiability conditions, enabling the design of network reconstruction experiments that were previously impossible due to practical constraints on the types of actuation mechanisms available to the engineer or scientist. The work is motivated by the proteomics problem of reconstructing the Per-Arnt-Sim Kinase pathway used in the metabolism of sugars. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports on the in-situ growth of zinc oxide nanowires (ZnONWs) on a complementary metal oxide semiconductor (CMOS) substrate, and their performance as a sensing element for ppm (parts per million) levels of toluene vapour in 3000 ppm humid air. Zinc oxide NWs were grown using a low temperature (only 90°C) hydrothermal method. The ZnONWs were first characterised both electrically and through scanning electron microscopy. Then the response of the on-chip ZnONWs to different concentrations of toluene (400-2600ppm) was observed in air at 300°C. Finally, their gas sensitivity was determined and found to lie between 0.1% and 0.3% per ppm. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate an approach for the local synthesis of ZnO nanowires (ZnO NWs) and the potential for such structures to be incorporated into device applications. Three network ZnO NW devices are fabricated on a chip by using a bottom-up synthesis approach. Microheaters (defined by standard semiconductor processing) are used to synthesize the ZnO NWs under a zinc nitrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA, (CH2)6·N4) solution. By controlling synthesis parameters, varying densities of networked ZnO NWs are locally synthesized on the chip. The fabricated networked ZnO NW devices are then characterized using UV excitation and cyclic voltammetry (CV) experiments to measure their photoresponse and electrochemical properties. The experimental results show that the techniques and material systems presented here have the potential to address interesting device applications using fabrication methods that are fully compatible with standard semiconductor processing. © 2013 IEEE.