143 resultados para zero-phonon line
Resumo:
A remarkable shell structure is described that, due to a particular combination of geometry and initial stress, has zero stiffness for any finite deformation along a twisting path; the shell is in a neutrally stable state of equilibrium. Initially the shell is straight in a longitudinal direction, but has a constant, nonzero curvature in the transverse direction. If residual stresses are induced in the shell by, for example, plastic deformation, to leave a particular resultant bending moment, then an analytical inextensional model of the shell shows it to have no change in energy along a path of twisted configurations. Real shells become closer to the inextensional idealization as their thickness is decreased; experimental thin-shell models have confirmed the neutrally stable configurations predicted by the inextensional theory. A simple model is described that shows that the resultant bending moment that leads to zero stiffness gives the shell a hidden symmetry, which explains this remarkable property.
Resumo:
A novel method for on-line topographic analysis of rough surfaces in the SEM has been investigated. It utilises a digital minicomputer configured to act as a programmable scan generator and automatic focusing unit. The computer is coupled to the microscope through digital-to-analogue converters which enable it to generate ramp waveforms allowing the beam to be scanned over a small sub-region of the field under program control. A further digital-to-analogue converter regulates the current supply to the objective lens of the microscope. The video signal is sampled by means of an analogue-to-digital converter and the resultant binary code stored in the computer's memory as an array of numbers describing relative image intensity. Computations based on the intensity gradient of the image allow the objective lens current to be found for the in-focus condition, which may be related to the working distance through a previous calibration experiment. The sensitivity of the method for detecting small height changes is theoretically of the order of 1 μm. In practice the operator specifies features of interest by means of a mobile spot cursor injected into the SEM display screen, or he may scan the specimen at sub-regions corresponding to pre-determined points on a regular grid defined by him. The operation then proceeds under program control. | A novel method for on-line topographic analysis of rough surfaces in the SEM has been investigated. It utilizes a digital minicomputer configured to act as a programmable scan generator and automatic focusing unit. A further digital-to-analog converter regulates the current supply to the objective lens of the microscope. The video signal is sampled by means of an analog-to-digital converter and the resultant binary code stored in the computer's memory as an array of numbers describing relative image intensity. The sensitivity of the method for detecting small height changes is theroretically of the order of 1 mu m.
Resumo:
A convenient system for the rapid extraction of three dimensional information from pairs of SEM images has been constructed, eliminating the need for time-consuming photography. Results are produced in a digestable form. Distortions inherent in the SEM record display and in the photographic system are not relevant to the system described; only those arising within the column and stage need be considered.
Resumo:
This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.
Resumo:
In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.
Resumo:
Superconducting journal bearings have been investigated for use in flywheel systems. We report on the zero-field cooled and field-cooled stiffness of these bearings. They are made up of radial magnet rings with alternating polarities, a pole pitch of 11 mm and a surface field of 0.1 T. Field-cooled stiffness of the journal bearings increased four times over the zero-field-cooled stiffness. © 2005 IEEE.