180 resultados para polyethylene oxide


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the above entitled paper (ibid., vol. 55, no. 11, pp. 3001-3011), two errors were noticed after the paper went to press. The errors are corrected here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent efforts towards the fabrication of touch sensing systems are presented, in which zinc oxide nanowire arrays are embedded in a polymer matrix to produce an engineered composite material. In the future, these sensor systems will be fully flexible and multi-touch as intended for Nokia's 'Morph' concept device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quasi-static and dynamic behaviour of Linear Low Density Polyethylene (LLDPE) and two LLDPE nanocomposites were studied. Nanocomposites consisting of LLDPE filled with 1% carbon black and 0.5% nanoclay fillers, by weight, were considered. Under quasi-static tensile loading, an improvement in the energy absorbing capability was achieved by adding 1% carbon black fillers. However, during quasi-static puncture and dynamic impact loading, the advantage provided by the fillers was lost. Thermal softening due to adiabatic heating under high strain rate deformation and difference s in the state of stress are considered as reasons for this reduction. © 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates a catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions. Different morphologies of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The synthesized ZnO structures are characterized by the SEM, EDX and Raman spectra. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied heating power and ZnO nanostructures synthesis is investigated under ambient conditions. We observe that the density and morphology of ZnO nanostructures can be controlled through applied heating voltages. Furthermore, a connected composite structural (Zn-ZnO-Zn) layer is synthesized using combinative microheaters. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.