145 resultados para insect visual guidance
Resumo:
A significant proportion of the processing delays within the visual system are luminance dependent. Thus placing an attenuating filter over one eye causes a temporal delay between the eyes and thus an illusion of motion in depth for objects moving in the fronto-parallel plane, known as the Pulfrich effect. We have used this effect to study adaptation to such an interocular delay in two normal subjects wearing 75% attenuating neutral density filters over one eye. In two separate experimental periods both subjects showed about 60% adaptation over 9 days. Reciprocal effects were seen on removal of the filters. To isolate the site of adaptation we also measured the subjects' flicker fusion frequencies (FFFs) and contrast sensitivity functions (CSFs). Both subjects showed significant adaptation in their FFFs. An attempt to model the Pulfrich and FFF adaptation curves with a change in a single parameter in Kelly's [(1971) Journal of the Optical Society of America, 71, 537-546] retinal model was only partially successful. Although we have demonstrated adaptation in normal subjects to induced time delays in the visual system we postulate that this may at least partly represent retinal adaptation to the change in mean luminance.
Resumo:
When considering the potential uptake and utilization of technology management tools by industry, it must be recognized that companies face the difficult challenges of selecting, adopting and integrating individual tools into a toolkit that must be implemented within their current organizational processes and systems. This situation is compounded by the lack of sound advice on integrating well-founded individual tools into a robust toolkit that has the necessary degree of flexibility such that they can be tailored for application to specific problems faced by individual organizations. As an initial stepping stone to offering a toolkit with empirically proven utility, this paper provides a conceptual foundation to the development of toolkits by outlining an underlying philosophical position based on observations from multiple research and commercial collaborations with industry. This stance is underpinned by a set of operationalized principles that can offer guidance to organizations when deciding upon the appropriate form, functions and features that should be embodied by any potential tool/toolkit. For example, a key objective of any tool is to aid decision-making and a core set of powerful, flexible, scaleable and modular tools should be sufficient to allow users to generate, explore, shape and implement possible solutions across a wide array of strategic issues. From our philosophical stance, the preferred mode of engagement is facilitated workshops with a participatory process that enables multiple perspectives and structures the conversation through visual representations in order to manage the cognitive load in the collaborative environment. The generic form of the tools should be configurable for the given context and utilized in a lightweight manner based on the premise of start small and iterate fast. © 2011 IEEE.
Resumo:
Biological sensing is explored through novel stable colloidal dispersions of pyrrole-benzophenone and pyrrole copolymerized silica (PPy-SiO(2)-PPyBPh) nanocomposites, which allow covalent linking of biological molecules through light mediation. The mechanism of nanocomposite attachment to a model protein is studied by gold labeled cholera toxin B (CTB) to enhance the contrast in electron microscopy imaging. The biological test itself is carried out without gold labeling, i.e., using CTB only. The protein is shown to be covalently bound through the benzophenone groups. When the reactive PPy-SiO(2)-PPyBPh-CTB nanocomposite is exposed to specific recognition anti-CTB immunoglobulins, a qualitative visual agglutination assay occurs spontaneously, producing as a positive test, PPy-SiO(2)-PPyBPh-CTB-anti-CTB, in less than 1 h, while the control solution of the PPy-SiO(2)-PPyBPh-CTB alone remained well-dispersed during the same period. These dispersions were characterized by cryogenic transmission microscopy (cryo-TEM), scanning electron microscopy (SEM), FTIR and X-ray photoelectron spectroscopy (XPS).