93 resultados para horsehoe crab monitoring
Resumo:
Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
There has recently been considerable research published on the applicability of monitoring systems for improving civil infrastructure management decisions. Less research has been published on the challenges in interpreting the collected data to provide useful information for engineering decision makers. This paper describes some installed monitoring systems on the Hammersmith Flyover, a major bridge located in central London (United Kingdom). The original goals of the deployments were to evaluate the performance of systems for monitoring prestressing tendon wire breaks and to assess the performance of the bearings supporting the bridge piers because visual inspections had indicated evidence of deterioration in both. This paper aims to show that value can be derived from detailed analysis of measurements from a number of different sensors, including acoustic emission monitors, strain, temperature and displacement gauges. Two structural monitoring systems are described, a wired system installed by a commercial contractor on behalf of the client and a research wireless deployment installed by the University of Cambridge. Careful interpretation of the displacement and temperature gauge data enabled bearings that were not functioning as designed to be identified. The acoustic emission monitoring indicated locations at which rapid deterioration was likely to be occurring; however, it was not possible to verify these results using any of the other sensors installed and hence the only method for confirming these results was by visual inspection. Recommendations for future bridge monitoring projects are made in light of the lessons learned from this monitoring case study. © 2014 This work is made available under the terms of the Creative Commons Attribution 4.0 International license,.
Resumo:
This paper describes part of the monitoring undertaken at Abbey Mills shaft F, one of the main shafts of Thames Water's Lee tunnel project in London, UK. This shaft, with an external diameter of 30 m and 73 m deep, is one of the largest ever constructed in the UK and consequently penetrates layered and challenging ground conditions (Terrace Gravel, London Clay, Lambeth Group, Thanet Sand Formation, Chalk Formation). Three out of the twenty 1-2 m thick and 84 m deep diaphragm wall panels were equipped with fibre optic instrumentation. Bending and circumferential hoop strains were measured using Brillouin optical time-domain reflectometry and analysis technologies. These measurements showed that the overall radial movement of the wall was very small. Prior to excavation during a dewatering trial, the shaft may have experienced three-dimensional deformation due to differential water pressures. During excavation, the measured hoop and bending strains of the wall in the chalk exceeded the predictions. This appears to be related to the verticality tolerances of the diaphragm wall and lower circumferential hoop stiffness of the diaphragm walls at deep depths. The findings from this case study provide valuable information for future deep shafts in London. © ICE Publishing: All rights reserved.