202 resultados para graphene nanodots
Resumo:
Large area uniform nanocrystalline graphene is grown by chemical vapor deposition on arbitrary insulating substrates that can survive ∼1000°C. The as-synthesized graphene is nanocrystalline with a domain size in the order of ∼10 nm. The material possesses a transparency and conductivity similar to standard graphene fabricated by exfoliation or catalysis. A noncatalytic mechanism is proposed to explain the experimental phenomena. The developed technique is scalable and reproducible, compatible with the existing semiconductor technology, and thus can be very useful in nanoelectronic applications such as transparent electronics, nanoelectromechanical systems, as well as molecular electronics. © 2012 IEEE.
Resumo:
The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼43cm -1 in bulk graphite to ∼31cm -1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
A noncatalytic chemical vapor deposition mechanism is proposed, where high precursor concentration, long deposition time, high temperature, and flat substrate are needed to grow large-area nanocrystalline graphene using hydrocarbon pyrolysis. The graphene is scalable, uniform, and with controlled thickness. It can be deposited on virtually any nonmetallic substrate that withstands ∼1000 °C. For typical examples, graphene grown directly on quartz and sapphire shows transmittance and conductivity similar to exfoliated or metal-catalyzed graphene, as evidenced by transmission spectroscopy and transport measurements. Raman spectroscopy confirms the sp 2-C structure. The model and results demonstrate a promising transfer-free technique for transparent electrode production. © 2012 American Institute of Physics.
Resumo:
Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Ultrafast lasers play a key role in a variety of devices, from basic research to materials processing and medicine. Graphene has great potential as saturable absorber for ultrafast lasers. Here we present an overview of graphene-based ultrafast lasers, from solution processing of the raw materials, to their incorporation into polymers, device fabrication and testing. © 2011 The Japan Society of Applied Physics.
Resumo:
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
A systematic study of the Cu-catalyzed chemical vapor deposition of graphene under extremely low partial pressure is carried out. A carbon precursor supply of just P CH4∼ 0.009 mbar during the deposition favors the formation of large-area uniform monolayer graphene verified by Raman spectra. A diluted HNO 3 solution is used to remove Cu before transferring graphene onto SiO 2/Si substrates or carbon grids. The graphene can be made suspended over a ∼12 μm distance, indicating its good mechanical properties. Electron transport measurements show the graphene sheet resistance of ∼0.6 kΩ/□ at zero gate voltage. The mobilities of electrons and holes are ∼1800 cm 2/Vs at 4.2 K and ∼1200 cm 2/Vs at room temperature. © 2011 IEEE.
Resumo:
Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp 2 hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13 of electric-field effect. The Hall mobility is ∼40 cm 2/Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size ∼10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes. © 2012 American Institute of Physics.
Resumo:
In this work we present a flexible Electrostatic Tactile (ET) surface/display realized by using new emerging material graphene. The graphene is transparent conductor which successfully replaces previous solution based on indium-thin oxide (ITO) and delivers more reliable solution for flexible and bendable displays. The electrostatic tactile surface is capable of delivering programmable, location specific tactile textures. The ET device has an area of 25 cm 2, and consists of 130 μm thin optically transparent (>76%) and mechanically flexible structure overlaid unobtrusively on top of a display. The ET system exploits electro vibration phenomena to enable on-demand control of the frictional force between the user's fingertip and the device surface. The ET device is integrated through a controller on a mobile display platform to generate fully programmable range of stimulating signals. The ET haptic feedback is formed in accordance with the visual information displayed underneath, with the magnitude and pattern of the frictional force correlated with both the images and the coordinates of the actual touch in real time forming virtual textures on the display surface (haptic virtual silhouette). To quantify rate of change in friction force we performed a dynamic friction coefficient measurement with a system involving an artificial finger mimicking the actual touch. During operation, the dynamic friction between the ET surface and an artificial finger stimulation increases by 26% when the load is 0.8 N and by 24% when the load is 1 N. © 2012 ACM.
Resumo:
Scalable growth is essential for graphene-based applications. Recent development has enabled the achievement of the scalability by use of chemical vapor deposition (CVD) at 1000°C with copper as a catalyst and methane as a precursor gas. Here we report our observation of early stage of graphene growth based on an ethylene-based CVD method, capable of reducing the growth temperature to 770°C for monolayer graphene growth on copper. We track the early stages of slow growth under low ethylene flow rate and observe the graphene domain evolution by varying the temperature and growth time. Temperature-dependence of graphene domain density gives an apparent activation energy of 1.0 eV for nucleation.
Resumo:
The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD.
Resumo:
We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.