91 resultados para feature vector
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (14)
- Adam Mickiewicz University Repository (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (17)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (91)
- CentAUR: Central Archive University of Reading - UK (82)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (57)
- Cochin University of Science & Technology (CUSAT), India (22)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (17)
- Indian Institute of Science - Bangalore - Índia (180)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (28)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (137)
- Queensland University of Technology - ePrints Archive (179)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (7)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (13)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (7)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We present and test an extension of slow feature analysis as a novel approach to nonlinear blind source separation. The algorithm relies on temporal correlations and iteratively reconstructs a set of statistically independent sources from arbitrary nonlinear instantaneous mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two audio signals with a high reliability. The algorithm is based on a mathematical analysis of slow feature analysis for the case of input data that are generated from statistically independent sources. © 2014 Henning Sprekeler, Tiziano Zito and Laurenz Wiskott.