100 resultados para deuterated methane cluster


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (φg=0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component PIV system operated at 7Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. © 2013 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes a new product development (NPD) model that aims to improve the effectiveness of innovative NPD in the medical devices. By adopting open innovation theory and applying an in-depth investigation methodology, this paper proposes a knowledge cluster that improves the integration of interdisciplinary human resources and enhances the acquirement of innovative technologies. A knowledge cluster approach helps gather, organise, synthesise, and accumulate knowledge in order to become the impetus for innovation. Although enterprises are no longer the principals of research and development, they should still be capable of integrating professional physicians, external groups, and individuals through the knowledge cluster platform. However, in order to support an effective NPD model, enterprises should provide adequate incentives and trust to external individuals or groups willing to contribute their expertise and knowledge to this knowledge cluster platform. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the standard many-body expansion technique that is used to approximate the total energy of a molecular system to enable the treatment of chemical reactions by quantum chemical techniques. By considering all possible assignments of atoms to monomer units of the many-body expansion and associating suitable weights with each, we construct a potential energy surface that is a smooth function of the nuclear positions. We derive expressions for this reactive many-body expansion energy and describe an algorithm for its evaluation, which scales polynomially with system size, and therefore will make the method feasible for future condensed phase simulations. We demonstrate the accuracy and smoothness of the resulting potential energy surface on a molecular dynamics trajectory of the protonated water hexamer, using the Hartree-Fock method for the many-body term and Møller-Plesset theory for the low order terms of the many-body expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new constitutive model called Methane Hydrate Critical State (MHCS) model was conducted to investigate the geomechanical response of the gas-hydrate-bearing sediments at the Nankai Trough during the wellbore construction process. The strength and dilatancy of gas-hydrate-bearing soil would gradually disappear when the bonds are destroyed because of excessively shearing, which are often observed in dense soils and also in bonded soils such as cemented soil and unsaturated soil. In this study, the MHCS model, which presents such softening features, would be incorporated into a staged-finite-element model in ABAQUS, which mainly considered the loading history of soils and the interaction between cement-casing-formation. This model shows the influence of gas-hydrate-bearing soil to the deformation and stability of a wellbore and the surrounding sediments during wellbore construction. At the same time, the conventional Mohr-Coulomb model was used in the model to show the advantages of MHCS model by comparing the results of the two models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond laser pulses are used in order to induce dielectric breakdown in gaseous mixtures, namely in some reactive air-methane mixtures. The light emitted from the laser induced plasma was analyzed while the main emission features are identified and assigned. From the analysis of the emission spectra, a linear relationship was found to hold between the intensity of some spectral features and methane content. Finally, the use of femtosecond laser induced breakdown as a tool for the in situ determination of the composition of gaseous mixtures (e.g., equivalence ratio) is also discussed. © 2013 Elsevier B.V. All rights reserved.